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1.0 Preface
There are many discrete mathematics textbooks available, so why did I decide to invest my time and energy to work on something
that perhaps only I myself would appreciate?

Mathematical writings are full of jargon and conventions that, without proper guidance, are difficult for beginners to follow. In the
past, students were expected to pick them up along the way on their own. Those who failed to do so would be left behind. Looking
back, I consider myself lucky. It was by God’s grace that I survived all those years. Now, when I teach a mathematical concept, I
discuss its motivation, explain why it is important, and provide a lot of examples. I dissect the proofs thoroughly to make sure
everyone understands them. In brief, I want to show my students how to analyze mathematical problems.

Most textbooks typically hide all these details. They only show you the final polished products. By training, mathematicians love
short and elegant proofs. This is reflected in their own writing. Yes, the results are beautiful, but it is a mystery how
mathematicians come up with such ideas. I want a textbook that discusses mathematical concepts in greater detail. I want to teach
my students how to read and write mathematical arguments. Since I could not find a textbook that suited my needs, I started writing
lecture notes to supplement the main text. Marginal notes, hands-on exercises, summaries, and section exercises were subsequently
added at different stages. The lecture notes have evolved into a full-length text.

Discrete mathematics is a rich subject, full of many interesting topics. Often, it is taught to both mathematics and computer science
majors. Due to the limit in space, this text addresses mainly the needs of the mathematics majors. Consequently, we will
concentrate on logic and proof techniques, and apply them to sets, basic number theory, and functions. In the last two chapters, we
discuss relations and combinatorics, as many students will find them useful in other courses.

Since the intended audience of the text is mathematics majors, I use a number of examples from calculus. By design, I hope this
can help the students review what they have learned, and see that discrete mathematics forms the foundation of many mathematical
arguments.

Discrete mathematics is often a required course in computer science. I find it hard and unjust to serve two different groups of
students in the same textbook. Although this text could be used in a typical first semester discrete mathematics class for the
computer science majors, they need to consult another text for the second semester course. Here are two that serve this purpose
well:

Alan Doerr and Kenneth Levasseur, Applied Discrete Structures.

Miguel A. Lerma, Notes on Discrete Mathematics.

Both are available on-line.

Why do I call this a workbook? There are many hands-on exercises designed to help students understand a new concept before they
move on to the next. I believe the title Workbook reflects the nature of the book, because I expect the students to work on the hands-
on exercises. But why spiral? Because the pedagogy is inspired by the spiral method. The idea is to revisit some themes and results
several times throughout the course and each time further deepen your understanding. You will find some problems pop up more
than once, and are solved in a different way each time. In other instances, a concept you learned earlier will be viewed from a new
perspective, thus adding a new dimension to it.

I am indebted to the anonymous reviewers, whose numerous valuable comments helped to shape the workbook in its current form.
I would also like to express my great appreciation to Scott Richmond of Reed Library at the State University of New York at
Fredonia, who provided many helpful suggestions and editorial assistance.

The reason I developed this workbook is to help students learn discrete mathematics. If this workbook proves to be a failure, I am
the one to blame. If you find this workbook serves its intended purposes, I give all the glory to God, in whom I believe and trust.

Harris Kwong 
April 21, 2015
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1.1: An Overview of Discrete Mathematics
What is discrete mathematics? Roughly speaking, it is the study of discrete objects. Here, discrete means “containing distinct or
unconnected elements.” Examples include:

Determining whether a mathematical argument is logically correct.
Studying the relationship between finite sets.
Counting the number of ways to arrange objects in a certain pattern.
Analyzing processes that involve a finite number of steps.

Here are a few reasons why we study discrete mathematics:

To develop our ability to understand and create mathematical arguments.
To provide the mathematical foundation for advanced mathematics and computer science courses.

In this text, we will cover these six topics:

1. Logic and Proof Techniques: Logic allows us to determine if a certain argument is valid. We will also learn several basic proof
techniques.

2. Basic Number Theory: Number theory is one of the oldest branches of mathematics; it studies properties of integers. We will
use the proof techniques we learned to prove some basic facts in number theory.

3. Sets: We study the fundamental properties of sets, and again we will use the proof techniques we learned to prove important
results in set theory.

4. Relations and Functions: Relations and functions describe the relationship between the elements from two sets. They play a
key role in mathematics.

5. Combinatorics: Combinatorics studies the arrangement of objects. For instance, one may ask, in how many ways can we form a
five-letter word. It is used in many disciplines beyond mathematics.

6. Big O:  A stand-alone topic on growth of functions.

All of these topics are crucial in the development of your mathematical maturity. The importance of some of these concepts may
not be apparent at the beginning. As time goes on, you will slowly understand why we cover such topics. In fact, you may not fully
appreciate the subjects until you start taking advanced courses in mathematics.

This is a very challenging course partly because of its intensity. We have to cover many topics that appear totally unrelated at first.
This is also the first time many students have to study mathematics in depth. You will be asked to write up your mathematical
argument clearly, precisely, and rigorously, which is a new experience for most of you.

Learning how to think mathematically is far more important than knowing how to do all the computations. Consequently, the
principal objective of this course is to help you develop the analytic skills you need to learn mathematics. To achieve this goal, we
will show you the motivation behind the ideas, explain the results, and dissect why some solution methods work while others do
not.

This page titled 1.1: An Overview of Discrete Mathematics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
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1.2: Suggestions to Students
All mathematics courses are difficult. It takes hard work and patience to learn mathematics. Rote memorization does not work.
Here are some suggestions that you may find helpful:

1. Do not skip classes.
2. Read the text, including the examples, before the lecture; review what you have learned after each lecture.
3. Do the exercises.

a. First, study the examples in the book.
b. Make an effort to understand how and why a solution works, and remember how certain types of problems should be solved.
c. When you do a problem, ask yourself if you have seen something similar before; if you have, follow the steps in its solution.
d. After solving a problem, look for alternate solutions, analyze and compare their differences.

4. Get help from the instructor, your friends, and whatever facility your college provides.
5. Develop good study habits.

a. Keep working every day: study the book, your own lecture notes, and, most important of all, do the exercises at the end of
each section.

b. Form a study group of two to three students, and meet on a regular basis to study together.
c. Check the solutions for any nonsense or discrepancies.
d. Learn how to solve the problems systematically.

6. Perseverance. Do not give up easily.
7. Be willing to help your classmates. Trying to explain something to others is the best way to learn anything new.

Attitude is the real difference between success and failure. Nothing comes easy. To succeed, you have to work hard. But you also
need to learn how to learn mathematics the right way.

Do not rely on memorizing formulas or procedures by rote. Instead, try to understand the concepts and ideas behind them. It is
important to learn when and how to use them.

Of course, it does not mean that you need not memorize anything at all. On the contrary, many basic results and definitions need
to be memorized. You may find it helpful to use a highlighter to mark the definitions and keywords that you have trouble
recalling, and I urge you to review them frequently.

Do not compartmentalize the material; all sections are connected in one way or another. Consequently, as you move along from
chapter to chapter and from section to section, try to observe the connections between the concepts you have learned. Without
saying, it is understood that you need to remember what you had learned earlier.

Write down all intermediate and partial results clearly. For instance, if the value of  is 7, do not just jot down the number 7;
instead, write . Otherwise, you may forget what 7 is after just a few minutes. In brief, present your results in such a way
that they can be read and understood by everyone in the class.

While we are on the subject, let us comment briefly how to write up a solution. Take your homework assignments seriously.
Keep in mind: to study for a test, you may want to review your homework, so you need to be able to read your own work. Write
everything clearly and neatly. The process of writing out everything correctly helps you think about what you write. Very often,
incoherent and incomprehensible writing is an indication of lack of understanding of the subject matter.

When doing your homework assignments, start with a draft, then look over it carefully, check the spelling and grammar, and
revise the solution. Make sure you write in complete sentences and use correct notations. If necessary, you may have to polish it
further. Before turning in the final version, be sure to check again for any mistakes that you may have overlooked.

How should a student use this workbook?

1. Read the workbook before class, and study the workbook again after each class.
2. Read and study the examples in the workbook.
3. Do the hands-on exercises.
4. Do the section exercises.

This page titled 1.2: Suggestions to Students is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris
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1.3: How to Read and Write Mathematics
Reading mathematics is difficult for beginners. It takes patience and practice to learn how to read mathematics. You may need to
read a sentence or a paragraph several times before you understand it completely. There are writing styles and notational
conventions that you acquire only by reading and paying attention to how mathematics is written. As we proceed with the course,
we will discuss the details. As a starter, let us offer several suggestions.

Make sure you know the definition of mathematical terms, the meaning and proper usage of mathematical symbols and
notations. Although this may sound obvious, many beginners have difficulty understanding a mathematical argument because
they fail to recall the exact meaning of certain mathematical concepts.

Often, the reason behind a claim lies in the sentence before it. Sometimes it could be found in the preceding paragraph, and it is
not unusual that you may need to check several sentences or paragraphs before it. You need to take an active role in reading
mathematics, and you need to remember what you have read.

Mathematicians prefer short and elegant proofs. To do this, they suppress the details of what they consider as “obvious”
reasons. But what is obvious to one reader may not be that obvious to another. At any rate, for practical reasons, it is impossible
to include every minute step in a mathematical argument. Consequently, keep your pencil and paper next to you, and be ready to
check the calculation and fill in the missing details.

It may help to try out some examples just to see how an argument works.

After you finish reading a proof, go over it one more time, and try to summarize its key steps (in other words, try to draw an
outline of the proof) in your own words.

Writing mathematics is even harder! It takes much longer to learn how to write mathematics. Of course, the most important thing
about a mathematical argument is its correctness. When we say “good” mathematical writing, we are talking about precision,
clarity, and sound logic.

Be precise! For example, do not just say “it” when it is unclear which quantity you are referring to. This is particularly true in a
lengthy argument. In this regard, it helps to identify and hence distinguish different quantities by their names such as , , ,
etc.

Use mathematical terms correctly! A common mistake is confusing an expression with an equation. An equation has an equal
sign, as in

but an expression does not, as in

Likewise, the following is an inequality:

Do not call it an equation!

Do not abuse the word “solve.” For instance, many students would say “solve .” A more appropriate saying should be
“compute the value of ” or simply “evaluate .”

In the beginning, it helps to follow what others do. This again means you need to read a lot of mathematical writing, and pick up
styles that you are comfortable with. We often follow some conventions (unwritten rules, if you prefer) that everyone follows.

Example 

Consider this argument for showing that :

We want to show that 

 
After expanding the product on the left-hand side, we find 

x y z

x +y = 5, (1.3.1)

x +y. (1.3.2)

x +y ≥ 5. (1.3.3)

+52 73

+ ,52 73 +52 73

1.3.1

(x −y)(x +y) = −x2 y2

(x −y)(x +y) = − .x
2

y
2 (1.3.4)
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which is what we want to prove.

The logic and mathematics in the argument are correct, but not the notation. In formal writing, each equation should be a stand-
alone equation. The last equation is incomplete, because it does not have anything on the left-hand side of the equal sign. Here is
a proper way to write the argument:

Solution

We want to show that 

 
After expanding the product on the left-hand side, we find 

Therefore  
which is what we want to prove.

The fix is simple: just repeat the left-hand side.

Example 
Short and simple mathematical expressions or equations such as  can be written within a paragraph. Longer ones
and expressions or equations that are important should be displayed separately, and centered, on their own lines, as in

If we intend to refer to the equation later, assign a number to it, and enclose the number within parentheses:

Now, for example, we can say, because of , we find

For a longer equation such as

it may look better and easier to follow if we break it up into several lines, and line them up along the equal signs:

Although we display the equation in three lines, they together form one equation. The equal signs at the beginning of the second
and third lines indicate that they are the continuation of the previous line. Since this is actually one long equation, we only need
to say  once, namely, at the beginning.

When part of the right-hand side extends beyond the margin, you may want to balance the look of the entire equation by
repositioning the left-hand side:

In the multi-line display format, always write the equal signs at the beginning of the lines. Do not forget to align the equal signs.

= +xy −yx − = − ,x
2

y
2

x
2

y
2 (1.3.5)

(x −y)(x +y) = − .x2 y2 (1.3.6)

(x −y)(x +y) = +xy −yx − = − ,x2 y2 x2 y2 (1.3.7)

(x −y)(x +y) = − .x2 y2

1.3.2

+ =a2 b2 c2

− = (x −y)( +xy + ).x
3

y
3

x
2

y
2 (1.3.8)

− = (x −y)(x +y).x
2

y
2 (1.3.9)

1.3.9

135 = 144 −9 = − = (12 −3)(12 +3) = 9 ⋅ 15.122 32 (1.3.10)

(x +y = (x +y)(x +y) = +xy +xy + = +2xy + ,)2 x2 y2 x2 y2 (1.3.11)

(x +y)2 = (x +y)(x +y)

= +xy +xy +x2 y2

= +2xy + .x
2

y
2

(1.3.12)

(1.3.13)

(1.3.14)

(x +y)2

( +2xy + )( +2xy + )x
2

y
2

x
2

y
2

=

=

+2 y + +2 y +4 +2x + +2x +x
4

x
3

x
2
y

2
x

3
x

2
y

2
y

3
x

2
y

2
y

3
y

4

+4 y +6 +4x + .x4 x3 x2y2 y3 y4
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When part of the right-hand side is too long to display as a single piece, we may split it into multiple pieces:

It is a common practice to use indentation to indicate the continuation of part of a line into the next.

There will be more discussion as we continue. Let us not forget: the best way to learn is to watch and observe how others do it.
Reading is a must! Reading and analyzing technical papers will surely improve your mathematical knowledge as well as your
writing.

This page titled 1.3: How to Read and Write Mathematics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Harris Kwong (OpenSUNY) .

(x +y)5 = (x +y (x +y)2 )3

= ( +2xy + )( +3 y +3x + )x
2

y
2

x
3

x
2

y
2

y
3

= +3 y +3 + +2 y +6 +6 +2xx
5

x
4

x
3
y

2
x

2
y

3
x

4
x

3
y

2
x

2
y

3
y

4

+ +3 +3x +x
3
y

2
x

2
y

3
y

4
y

5

= +5 y +10 +10 +5x + .x5 x4 x3y2 x2y3 y4 y5

(1.3.15)

(1.3.16)

(1.3.17)

(1.3.18)

(1.3.19)
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1.4: Proving Identities
There are many methods that one can use to prove an identity. The simplest is to use algebraic manipulation, as we have
demonstrated in the previous examples. In an algebraic proof, there are three acceptable approaches:

From left to right: expand or simplify the left-hand side until you obtain the right-hand side.

From right to left: expand or simplify the right-hand side until you obtain the left-hand side.

Meet in the middle: expand or simplify the left-hand side and the right-hand side separately until you obtain the same result
from both sides.

Example 

To prove that

we start from the right-hand side, because it is more complicated than the left-hand side. The proof proceeds as follows:

Solution

 
Thus 

 
Remember: start from one side and work on it until you obtain the other side.

Example 

The following “proof” of

is incorrect:

Here is the reason. When we place

at the start of the proof, by convention, we are proclaiming that  is indeed equal to 
. However, this is what we are asked to prove. Before we have actually proved that it is true, we

do not know yet, whether they are equal. Therefore, it is wrong to start the proof with it.

Example 

For the same reason, the following “proof” of the identity

is unacceptable:

1.4.1

− = (x −y)( +xy + ),x
3

y
3

x
2

y
2 (1.4.1)

(x −y)( +xy + )x
2

y
2 =

=

− y + y −x +x −x
3

x
2

x
2

y
2

y
2

y
3

− .x
3

y
3

− = (x −y)( +xy + ).x3 y3 x2 y2 (1.4.2)

1.4.2

+ + = ( +xy + )( −xy + )x4 x2y2 y4 x2 y2 x2 y2 (1.4.3)

+ +x4 x2y2 y4 =

=

=

( +xy + )( −xy + )x2 y2 x2 y2

− y + + y − +x + −x +x
4

x
3

x
2
y

2
x

3
x

2
y

2
y

3
x

2
y

2
y

3
y

4

+ + .x4 x2y2 y4

+ + = ( +xy + )( −xy + )x
4

x
2
y

2
y

4
x

2
y

2
x

2
y

2 (1.4.4)

+ +x4 x2y2 y4

( +xy + )( −xy + )x2 y2 x2 y2

1.4.3

− = (x −y)( +xy + )x3 y3 x2 y2 (1.4.5)
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By putting  on the left-hand side of every line, this becomes (by convention) a collection of three equations. In a
nutshell, the argument starts with an equation and we simplify until we obtain something we know is true. If this format is valid,
we can “prove” that , as follows:

By writing  at the beginning of the proof, what we really say is “Assume  is true.” But this is what we intend to
prove. Thus, in effect, we are putting the cart in front of the horse, which is logically incorrect. There is another explanation why
this proof is incorrect. We shall discuss it in Section 2.3.

In brief: we cannot start with the given identity and simplify both sides until we obtain an equality (or an equation of the form 
).

Example 
Show that .

Solution 1

We can use the “meet in the middle” approach. Recall that we cannot simplify both sides simultaneously. Instead, we should
expand the two sides separately, and then compare the results. We also suggest adding more writing (in words) to help with
the explanation.

 
The right-hand side expands into 

 
Since both sides yield the same result, they must be equal.

Although the proof is correct, it requires two sets of computation. It is much easier to use either the left-to-right or the right-
to-left approach.

Solution 2

A better alternative is to start from the left-hand side and simplify it until we obtain the right-hand side. Our secret weapon is
factorization:

This approach is usually better and safer, because no messy computation is involved.

Hands-on Exercise 

−x3 y3

−x3 y3

−x3 y3

=

=

=

(x −y)( +xy + )x2 y2

− y + y −x +x −x3 x2 x2 y2 y2 y3

−x3 y3

(1.4.6)

−x3 y3

21 = 6

21

6

27

=

=

=

6

21

27

21 = 6 21 = 6

0 = 0

1.4.4

k(k +1)(2k +1) +(k +1 = (k +1)(k +2)(2k +3)1
6

)2 1
6

k(k +1)(2k +1) +(k +11
6

)2 =

=

(2 +3 +k) +( +2k +1)1
6

k3 k2 k2

+ + k +1.1
3

k3 3
2

k2 13
6

(k +1)(k +2)(2k +3)1

6
=

=

(2 +9 +13k +6)1

6
k3 k2

+ + k +1.1
3

k3 3
2

k2 13
6

k(k +1)(2k +1) +(k +11
6

)2 =

=

=

(k +1)[k(2k +1) +6(k +1)]1
6

(k +1)(2 +7k +6)1
6

k2

(k +1)(k +2)(2k +3).1
6

1.4.1
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Show that

Be sure to use one of the three methods we discussed above.

Solution

Summary and Review
There are only three ways to prove an identity: left to right, right to left, or meet in the middle.
Never prove an identity by simplifying both sides simultaneously.

Exercises 

Exercise 
Let  and  be any real numbers. Prove that

Exercise 
Let  and  be any real numbers. Prove that

Exercise 

Prove that, for any distinct real numbers  and ,

Exercise 
Prove that, for any integer ,

+(k +1)(k +2) = .
k(k +1)(k +2)

3

(k +1)(k +2)(k +3)

3
(1.4.7)

1.4.

1.4.1

x y

(x +y = +3 y +3x + .)3
x

3
x

2
y

2
y

3 (1.4.8)

1.4.2

x y

(a −b = −4 b +6 −4a + .)4
a

4
a

4
a

2
b

2
b

3
b

4 (1.4.9)

1.4.3

x y

= +xy + .
−x3 y3

x −y
x

2
y

2 (1.4.10)

1.4.4

k
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Exercise 
Prove that, for any integer ,

This page titled 1.4: Proving Identities is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

+(k +1)(k +2)(k +3) = .
k(k +1)(k +2)(k +3)

4

(k +1)(k +2)(k +3)(k +4)

4
(1.4.11)

1.4.5

k

+(k +1 = .
(k +1k2 )2

4
)3 (k +1 (k +2)2 )2

4
(1.4.12)
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1.5: Introduction to Sets and Real Numbers

Sets - An Introduction
A set is a collection of objects. The objects in a set are called its elements or members. The elements in a set can be any types of
objects, including sets! The members of a set do not even have to be of the same type. For example, although it may not have any
meaningful application, a set can consist of numbers and names.

We usually use capital letters such as , , , , and  to represent sets, and denote their generic elements by their corresponding
lowercase letters , , , , and , respectively. To indicate that  is an element of the set , we adopt the notation , which
means “  belongs to ” or “  is an element of .”  Consequently, saying  is another way of saying  is a real number.

Definition: Subset
Set A is a subset of Set B if and only if every element in Set A is also in Set B.

In symbols:

Real Numbers and some Subsets of Real Numbers
We designate these notations for some special sets of numbers:

All these are infinite sets, because they all contain infinitely many elements. In contrast, finite sets contain finitely many elements. 

 

We list the natural numbers and integers while defining the rational, real and irrational numbers.

 

 

Definition - Rational Numbers
A rational number is a number that can be expressed as a ratio of two integers (with the second integer not equal to zero).
Hence, a rational number can be written as  for some integers  and , where .

 

Definition - Real Numbers
The real numbers are the numbers corresponding to all the points on the number line.

A B C S T

a b c s t b B b ∈ B

b B b B x ∈ R x

A ⊂ B ⟺ x ∈ A → x ∈ B (1.5.1)

N

Z

Q

R

=
=

=
=

the set of natural numbers,
the set of integers,

the set of rational numbers,
the set of real numbers.

N = {1, 2, 3, …}

Z = {…, −3, −2, −1, 0, 1, 2, 3, …}

m
n

m n n ≠ 0
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Definition - Irrational Numbers
An irrational number is a real number that can not be expressed as a ratio of two integers; i.e., is not rational.

 

Closure
Definition
Given a set S with a binary operation *, S is closed under the operation * if and only if 

.

Example 
Suppose you add any two integers together. Will the sum always be an integer?

Solution

Yes; that's why the set of integers is closed under addition.

 

Assumption
We will use the property that the set of integers is closed under addition, subtraction and multiplication.

Alternate syntax is "closure of integers under multiplication".

This assumption can be used as a reason in an explanation or a proof.

Example 

If  because ?

Solution

The set of integers is closed under addition.

Set Notation
Roster Notation
We can use the roster notation to describe a set if it has only a small number of elements. We list all its elements explicitly, as in

For sets with more elements, show the first few entries to display a pattern, and use an ellipsis to indicate “and so on.” For example,

represents the set of the first 20 positive integers. The repeating pattern can be extended indefinitely, as in

 

In regards to parity, an integer is either even or odd. For now, we will use our common understanding of even and odd and define
these terms later in this text. The set of even integers can be described as .

x ∗ y ∈ S for every x ∈ S and for every y ∈ S

1.5.1

1.5.2

a, b ∈ Z, then a +b ∈ Z

A = the set of natural numbers not exceeding 7 = {1, 2, 3, 4, 5, 6, 7}. (1.5.2)

{1, 2, 3, … , 20} (1.5.3)

N

Z

=

=

{1, 2, 3, …}

{… , −2, −1, 0, 1, 2, …}

{… , −4, −2, 0, 2, 4, …}
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Set-Builder Notation
We can use a set-builder notation to describe a set. For example, the set of natural numbers is defined as

Here, the vertical bar  is read as “such that” or “for which.” Hence, the right-hand side of the equation is pronounced as “the set of 
 belonging to the set of integers such that ,” or simply “the set of integers  such that .” In general, this descriptive

method appears in the format

The notation  means “such that” or “for which” only when it is used in the set notation. It may mean something else in a different
context. Therefore, do not write “let  be a real number  ” if you want to say “ let  be a real number such that .” It
is considered improper to use a mathematical notation as an abbreviation.

Example 
Write these two sets

by listing their elements explicitly.

Solution

The first set has three elements, and equals . The second set is a singleton set; it is equal to .

hands-on exercise 
Use the roster method to describe the sets  and .

hands-on exercise 
Use the roster method to describe the set

There is a slightly different format for the set-builder notation. Before the vertical bar, we describe the form the elements assume,
and after the vertical bar, we indicate from where we are going to pick these elements:

Here the vertical bar  means “where.” For example,

is the set of  where . It represents the set of squares: .

Example 
The set

describes the set of even numbers. We can also write the set as .

hands-on exercise 

Describe the set  with the roster method.

hands-on exercise 
Use the roster method to describe the set .

N = {x ∈ Z ∣ x > 0}. (1.5.4)

∣
x x > 0 x x > 0

{ membership ∣ properties }. (1.5.5)

∣
x ∣ > 3x2 x > 3x2

1.5.3

{x ∈ Z ∣ ≤ 1} and {x ∈ N ∣ ≤ 1}x2 x2 (1.5.6)

{−1, 0, 1} {1}

1.5.1

{x ∈ Z ∣ ≤ 20}x2 {x ∈ N ∣ ≤ 20}x2

1.5.2

{x ∈ N ∣ x ≤ 20 and x =  for some integer n}.n2 (1.5.7)

{ pattern ∣ membership }. (1.5.8)

∣

{ ∣ x ∈ Z}x2 (1.5.9)

x2 x ∈ Z {0, 1, 4, 9, 16, 25, …}

1.5.4

{2n ∣ n ∈ Z} (1.5.10)

2Z

1.5.3

{2n +1 ∣ n ∈ Z}

1.5.4

{3n ∣ n ∈ Z}
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Interval Notation
An interval is a set of real numbers, all of which lie between two real numbers. Should the endpoints be included or excluded
depends on whether the interval is open, closed, or half-open. We adopt the following interval notation to describe them:

It is understood that  must be less than  . Hence, the notation  does not make much sense. How about ? This may be
used in some texts to mean  but we will only use  for intervals and use roster notation for  single number such as .

An interval contains not just integers, but all real numbers between the two endpoints.  For instance,  because the
interval  also includes real numbers such at , , and .

We can use  in the interval notation:

However, we cannot write  or , because  are not numbers. It is nonsense to say  or . For the
same reason, we can write  and , but not  or .

Example 
Write the intervals , , and  in the descriptive form.

Solution

According to the definition of an interval, we find

What would you say about ?

Example 
Write these sets

in the interval form.

Solution

The answers are  and , respectively. The membership of  affects the answers. If we change the second set to 
, the answer would have been . Can you explain why ?

Example 
Be sure you are using the right types of numbers. Compare these two sets

One consists of integers only, while the other contains real numbers. Thus, , and .

(a, b) = {x ∈ R ∣ a < x < b},

[a, b] = {x ∈ R ∣ a ≤ x ≤ b},

[a, b) = {x ∈ R ∣ a ≤ x < b},

(a, b] = {x ∈ R ∣ a < x ≤ b}.

(1.5.11)

a b (5, 3) [3, 3]
{3} a < b {3}

(1, 5)≠{2, 3, 4}

(1, 5) 1.276 2
–

√ π

±∞

(a, ∞)

(−∞, a)

=

=

{x ∈ R ∣ a < x},

{x ∈ R ∣ x < a}.

(a, ∞] [−∞, a) ±∞ x ≤ ∞ −∞ ≤ x

[a, ∞) (−∞, a] [a, ∞] [−∞, a]

1.5.5

(2, 3) [2, 3] (2, 3]

(2, 3)

[2, 3]

(2, 3]

=

=

=

{x ∈ R ∣ 2 < x < 3},

{x ∈ R ∣ 2 ≤ x ≤ 3},

{x ∈ R ∣ 2 < x ≤ 3}.

[2, 3)

1.5.6

{x ∈ R ∣ −2 ≤ x < 5} and {x ∈ R ∣ ≤ 1}x2 (1.5.12)

[−2, 5) [−1, 1] x

{x ∈ Z ∣ ≤ 1}x2 {−1, 0, 1} {−1, 0, 1}≠[−1, 1]

1.5.7

S

T

=

=

{x ∈ Z ∣ ≤ 5},x2

{x ∈ R ∣ ≤ 5}.x2

S = {−2, −1, 0, 1, 2} T = [ − , ]5
–

√ 5
–

√
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Note
If the membership is not specified, such as:  then it is understood that  is the default set that  belongs to.

 

hands-on exercise 
Which of the following sets

can be represented by the interval notation ? Explain.

hands-on exercise 

Explain why .

hands-on exercise 
True or false: ? Explain.

Let  be a set of numbers; we define

In plain English,  is the subset of  containing only those elements that are positive,  contains only the negative elements of 
, and  contains only the nonzero elements of .

Example 
It should be obvious that .

hands-on exercise 

What is the notation for the set of negative integers?

Some mathematicians also adopt these notations:

Accordingly, we can write the set of even integers as , and the set of odd integers can be represented by .

Example 

There are three kinds of real numbers: positive, negative and  zero.

Trichotomy Property
For any two real numbers,  and  one and only one of these relations is true:

{x | ≤ 5}x2 R x

1.5.5

{x ∈ Z ∣ 1 < x < 7} and {x ∣ 1 < x < 7} (1.5.13)

(1, 7)

1.5.6

[2, 7 ]≠{2, 3, 4, 5, 6, 7}

1.5.7

(−2, 3) = {−1, 0, 1, 2}

S

S+

S−

S∗

=

=

=

{x ∈ S ∣ x > 0},

{x ∈ S ∣ x < 0},

{x ∈ S ∣ x≠0}.

S+ S S−

S S∗ S

1.5.8

N =Z
+

1.5.8

bS

a +bS

=

=

{bx ∣ x ∈ S},

{a +bx ∣ x ∈ S}.

2Z 1 +2Z

1.5.9

5Z = {… , −15, −10, −5, 0, 5, 10, 15, …} (1.5.14)

a b

a < b

a = b

a > b.

https://libretexts.org/
https://math.libretexts.org/@go/page/23234?pdf


1.5.6 https://math.libretexts.org/@go/page/23234

Exercises

Exercise 
Determine whether these statements are true or false:

a. 
b. 
c. 
d. 
e. 
f. 

Answer

(a) true (b) true (c) true (d) false (e) false (f) true

Exercise 
Determine whether these statements are true or false:

a. 
b. 
c. 
d. 
e. 
f. 

Exercise 
Explain why . Is it still true that ?

Answer

By definition, a rational number can be written as a ratio of two integers. After multiplying the numerator by 7, we still have
a ratio of two integers. Conversely, given any rational number , we can multiply the denominator by 7, we obtain another
rational number  such that . Hence, the two sets  and  contain the same collection of rational numbers. In
contrast,  contains only one number, namely, 0. Therefore, .

Exercise 

Find the number(s)  such that .

Exercise 
Determine whether these statements are true or false:

(See section on Closure.)

a. The set of natural numbers is closed under subtraction.
b. The set of integers is closed under subtraction.
c. The set of integers is closed under division.
d. The set of rational numbers is closed under subtraction.
e. The set of rational numbers is closed under division.
f.  is closed under division.

Answer

(a) false (b) true (c) false (d) true (e) false (f) true

1.5.1

0 ∈ Q

0 ∈ Z

−4 ∈ Z

−4 ∈ N

2 ∈ 3Z
−18 ∈ 3Z

1.5.2

∈ Z2
–

√

−1 ∉ Z
+

0 ∈ N

π ∈ R

∈ Q4
2

1.5 ∈ Q

1.5.3

7Q=Q 0Q=Q

x

y 7y = x 7Q Q

0Q 0Q≠Q

1.5.4

k kZ =Z

1.5.5

Q∗
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2.1: Propositions
The rules of logic allow us to distinguish between valid and invalid arguments. Besides mathematics, logic has numerous
applications in computer science, including the design of computer circuits and the construction of computer programs. To analyze
whether a certain argument is valid, we first extract its syntax.

Example 
These two arguments:

If , then . Therefore, if , then .

If I watch Monday night football, then I will miss the following Tuesday 8 a.m. class. Therefore, if I do not miss my Tuesday
8 a.m. class, then I did not watch football the previous Monday night.

use the same format:

If p then q. Therefore if  is false then  is false.

If we can establish the validity of this type of argument, then we have proved at once that both arguments are legitimate. In fact,
we have also proved that any argument using the same format is also credible.

Hands-on Exercise 
Can you give another argument that uses the same format in the last example?

In mathematics, we are interested in statements that can be proved or disproved. We define a proposition (sometimes called a
statement, or an assertion) to be a sentence that is either true or false, but not both.

Example 

The following sentences:

Barack Obama is the president of the United States.

.

are propositions, because each of them is either true or false (but not both).

Example 

These two sentences:

Ouch!

What time is it?

are not propositions because they do not proclaim anything; they are exclamation and question, respectively.

Example 

Explain why the following sentences are not propositions:

a. .
b. .
c.  implies .

Solution
a. This equation is not a statement because we cannot tell whether it is true or false unless we know the value of . It is true

when ; it is false for other -values. Since the sentence is sometimes true and sometimes false, it cannot be a
statement.

b. For the same reason, since  is sometimes true and sometimes false, it cannot be a statement.
c. This looks like a statement because it appears to be true all the time. Yet, this is not a statement, because we never say

what  represents. The claim is true if  is a real number, but it is not always true if  is a matrix . Thus, it is not a

2.1.1

x +1 = 5 x = 4 x ≠ 4 x +1 ≠ 5

q p

2.1.1

2.1.2

2 +3 = 6

2.1.3

2.1.4

x +1 = 2

x −y = y −x

= 0A2 A = 0

x

x = 1 x

x −y = y −x

A A A 1
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proposition.

Hands-on Exercise 
Explain why these sentences are not propositions:

a. He is the quarterback of our football team.
b. .
c. .

Example 
Although the sentence “ ” is not a statement, we can change it into a statement by adding some condition on . For
instance, the following is a true statement:

For some real number , we have .

and the statement

For all real numbers , we have .

is false. The parts of these two statements that say “for some real number ” and “for all real numbers ” are called quantifiers.
We shall study them in Section 6.

Example 

Saying that

“A statement is not a proposition if we cannot decide whether it is true or false.”

is different from saying that

“A statement is not a proposition if we do not know 
how to verify whether it is true or false.”

The more important issue is whether the truth value of the statement can be determined in theory. Consider the sentence

Every even integer greater than 2 can be written as the sum of two primes.

Nobody has ever proved or disproved this claim, so we do not know whether it is true or false, even though computational data
suggest it is true. Nevertheless, it is a proposition because it is either true or false but not both. It is impossible for this sentence
to be true sometimes, and false at other times. With the advancement of mathematics, someone may be able to either prove or
disprove it in the future. The example above is the famous Goldbach Conjecture, which dates back to 1742.

We usually use the lowercase letters ,  and  to represent propositions. This can be compared to using variables ,  and  to
denote real numbers. Since the truth values of , , and  vary, they are called propositional variables. A proposition has only two
possible values: it is either true or false. We often abbreviate these values as T and F, respectively.

Given a proposition , we form another proposition by changing its truth value. The result is called the negation of , and is
denoted  or , both of which are pronounced as “not .” The similarity between the notations  and  is obvious.

We can also write the negation of  as , which is pronounced as “  bar.” The truth value of  is opposite of that of . Hence, if  is
true, then  would be false; and if  is false, then  would be true. We summarize these results in a truth table:

T F

F T

Example 
Find the negation of the following statements:

a. George W. Bush is the president of the United States.

2.1.2

x +y = 17

AB = BA

2.1.5

x +1 = 2 x

x x +1 = 2

x x +1 = 2

x x

2.1.6

p q r x y z

p q r

p p

∼ p ¬p p ∼ p −x

p p̄̄̄ p p̄̄̄ p p

p̄̄̄ p p̄̄̄

p p̄̄̄

2.1.7
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b. It is not true that New York is the largest state in the United States.
c.  is a real number such that .
d.  is a real number such that .

If necessary, you may rephrase the negated statements, and change a mathematical notation to a more appropriate one.

Answer
a. George W. Bush is not the president of the United States.
b. It is true that New York is the largest state in the United States.
c. The phrase “  is a real number” describes what kinds of numbers we are considering. The main part of the proposition is

the proclamation that . Hence, we only need to negate “ ”. The answer is:

d.  is a real number such that .

Hands-on Exercise 
a.  is an integer greater than 7. 0.4in
b. We can factor 144 into a product of prime numbers. 0.4in
c. The number 64 is a perfect square.

 

Summary and Review
A proposition (statement or assertion) is a sentence which is either always true or always false.
The negation of the statement  is denoted , , or .
We can describe the effect of a logical operation by displaying a truth table which covers all possibilities (in terms of truth
values) involved in the operation.

Exercises 

Exercise 
Indicate which of the following are propositions (assume that  and  are real numbers).

a. The integer 36 is even.
b. Is the integer  even?
c. The product of 3 and 4 is 11.
d. The sum of  and  is 12.
e. If , then .
f. .

Answer

 Only (a), (c), and (e) are propositions.

Exercise 
Which of the following are propositions (assume that  is a real number)?

a. .
b. The product of  and  is .
c. It is not possible for  to be both even and odd.
d. If the integer  is odd, is  odd?
e. The integer  is prime.
f. .

Exercise 

x x = 4

x x < 4

x

x = 4 x = 4

x is a real number such that x ≠ 4. (2.1.1)

x x ≥ 4

2.1.3

x

p ¬p ∼ p p̄̄̄

2.1.

2.1.1

x y

−8315

x y

x > 2 ≥ 3x2

−5 +352

2.1.2

x

2π +5π = 7π

x2 x3 x6

−7315

x x2

−12524287

1.7 +.2 = 4.0

2.1.3
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Determine the truth values of these statements:

a. The product of  and  is  for any real number .
b.  for any real number .
c. The number  is even.
d. The sum of two odd integers is even.

Answer

(a) false (b) false (c) false (d) true

Exercise 
Determine the truth values of these statements:

a. .
b. .
c.  is a vowel.

 

Exercise 
Negate these statements:

a. .
b. .
c.  is a vowel.

Answer

(a)  (b)  (c)  is not a vowel

Exercise 
Negate the following statements about the real number :

a. 
b. 
c. 

This page titled 2.1: Propositions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

x2 x3 x6 x

> 0x2 x

−8315

2.1.4

π ∈ Z

+ + = ⋅ /413 23 33 32 42

u

2.1.5

π ∈ Z

+ + = ⋅ /413 23 33 32 42

u

π ∉ Z + + ≠ ⋅ /413 23 33 32 42 u

2.1.6

x

x > 0

x ≤ −5

7 ≤ x
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2.2: Conjunctions and Disjunctions
Given two real numbers  and , we can form a new number by means of addition, subtraction, multiplication, or division, denoted

, , , and , respectively. The symbols , ,  , and  are binary operators because they all work on two
operands. In fact, the negative sign in  can be regarded as a unary operator that changes the sign of .

In a similar manner, from one or more logical statements, we can form a compound statement by joining them with logical
operators, which are also called logical connectives because they are used to connect logical statements. Obviously, negation is a
unary operation.

Since a compound statement is itself a statement, it is either true or false. Therefore, we define a logical operation by describing the
truth value of the resulting compound statement. The first two binary operations we shall study are conjunction and disjunction.
They perform the “and” and “or” operations, respectively.

 

AND     OR  

name meaning notation truth value

conjunction  and true if both  and  are true, false
otherwise

disjunction  or false if both  and  are false, true
otherwise

Their truth values are summarized in the following truth table:

T T T T

T F F T

F T F T

F F F F

Example 
Do not use mathematical notations as abbreviation in writing. For example, do not write “  are real numbers” if you want to
say “  and  are real numbers.”

In fact, the phrase “  are real numbers” is syntactically incorrect. Since  is a binary logical operator, it is used to connect
two logical statements. Here, the “ ” before  is not a logical statement. Therefore we cannot write “  are real numbers.”

Incidentally, the statement “  and  are real numbers” is actually a conjunction. It means “  is a real number and  is a real
number,” or symbolically,

It is wrong to write “ .” Can you explain why?

hands-on exercise 

Write “  and  are rational” as a conjunction, first in words, then in mathematical symbols.

Example 

The statement “New York is the largest state in the United States and New York City is the state capital of New York” is clearly
a conjunction. A conjunction of two statements is true only when both statements are true. Since New York is not the largest
state in the United States, the conjunction is false.

x y

x+y x−y x ⋅ y x/y + − ⋅ /
−x x

∧ ∨

p q p ∧ q
p q

p q p ∨ q
p q

p q p ∧ q p ∨ q

2.2.1

x∧ y

x y

x∧ y ∧
x ∧ x∧ y

x y x y

(x ∈ R)∧ (y ∈ R). (2.2.1)

x∧ y ∈ R

2.2.1

x y

2.2.2
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In general, in a conjunction of two statements, if the first statement is false, no further consideration of the second statement is
necessary since we know the conjunction must be false. In computer science, this is referred to as the short circuit evaluation.

Example 

The statement “  is greater than 6 or  is less than 5” can be expressed symbolically as

Both statements “ ” and “ ” are false. Hence, their disjunction is also false.

Example 
Determine the truth values of the following statements:

Either  or 

Solution

(a) Since  is true, but  is false, their conjunction is false.

(b) Since  is false, and  is also false, their disjunction is false.

hands-on exercise 
Determine the truth values of the following statements:

 and .
.

Be sure to show your reasons.

example 

What does “ ” really mean, logically?

Solution

It means the conjunction “ .” Hence, given a real number , to test whether , we have to check
whether  and .

hands-on exercise 
Write  as a conjunction.

hands-on exercise 
Many students assume that they can negate “ ” by reversing the signs. However, neither “ ” nor “

” is the correct negation. For example, what does “ ” really mean? Actually, the statement “ ” is
syntactically correct, and it is always false. Can you explain why?

In the everyday usage of most languages, when we say “  or ,” we normally mean exclusive or, which means either  or  is true,
but not both. An example is “I either pass or fail this course,” which really means

Either I pass this course or I fail this course.

Sometimes, as illustrated in the statement

Either you pass this course, or I pass this course.

the connective “or” can be interpreted as an inclusive or. The actual meaning of “or” in human languages depends on the context.
In mathematics, however, “or” always means inclusive or.

2.2.3

30
−−

√ 30
−−

√

( > 6)∨ ( < 5).30
−−

√ 30
−−

√ (2.2.2)

> 630
−−

√ < 530
−−

√

2.2.4

( > 5)∧ ( > 7)30
−−

√ 30
−−

√

( < 5)30
−−

√ ( > 7)30
−−

√

> 530
−−

√ > 730
−−

√

< 530
−−

√ > 730
−−

√

2.2.2

( < 5)30
−−

√ ( > 7)30
−−

√

( > 5)∨ ( < 7)30
−−

√ 30
−−

√

2.2.5

0 ≤ x ≤ 1

(x ≥ 0)∧ (x ≤ 1) x 0 ≤ x ≤ 1
x ≥ 0 x ≤ 1

2.2.3

5 < x < 8

2.2.4

0 ≤ x ≤ 1 0 ≥ x ≥ 1
0 > x > 1 0 ≥ x ≥ 1 0 ≥ x ≥ 1

p q p q
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Logically Equivalent  
Definition
Two logical formulas  and  are said to be logically equivalent, denoted

if  have have identical truth values in all cases.

Consider this truth table:

T F T

F T F

Do you see the truth table above shows 

 

Summary and Review
The conjunction “  and ” is denoted “ ”. It is true only when both  and  are true.
The disjunction “  or ” is denoted “ ”. It is false only when both  and  are false.
The inequality “ ” is actually a conjunction, it means “ ”.
Likewise, the phrase “  and  are rational” is also a conjunction, it means “  is rational and  is rational.” Symbolically, we can
write ” .”

Exercises   

Exercise 
Let , , and  represent the following statements:

: Sam had pizza last night.

: Chris finished her homework.

: Pat watched the news this morning.

Write each of these statements in symbolic form:

 

(a) Sam had pizza last night and Chris finished her homework.

(b) Chris did not finish her homework and Pat watched the news this morning.

(c) Sam did not have pizza last night or Chris did not finish her homework.

(d) Either Chris finished her homework or Pat watched the news this morning, but not both.

Answer

(a)  
(b)  
(c)  
(d) 

Exercise 

Define the propositional variables , , and  as in Problem 1. Express, in words, the following symbolic statements:

 

≡

p q

p ≡ q, (2.2.3)

p and q

p p̄̄̄ p̄̄̄
¯̄̄

p ≡ , ?p̄̄̄
¯̄̄

p q p∧ q p q

p q p∨ q p q

a < x < b (a < x)∧ (x < b)
x y x y

x ∈ Q∧ y ∈ Q

2.2.

2.2.1

p q r

p

q

r

p∧ q

∧ rq̄̄

∨p̄̄̄ q̄̄

(q∨ r)∧ q∧ r¯ ¯¯̄¯̄¯̄¯̄

2.2.2

p q r
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(a) 

(b) 

(c) 

(d) 

Exercise 
Consider the following statements:

: Niagara Falls is in New York.

: New York City is the state capital of New York.

: New York City will have more than 40 inches of snow in 2525.

The statement  is true, but the statement  is false. Represent each of the following statements in symbolic form. What are their
truth values if  is true? What if  is false?

 

(a) Niagara Falls is in New York and New York City is the state capital of New York.

(b) Niagara Falls is in New York or New York City is the state capital of New York.

(c) Either Niagara Falls is in New York and New York City is the state capital of New York, or New York City will have more
than 40 inches of snow in 2525.

(d) New York City is not the state capital of New York and New York City will have more than 40 inches of snow in 2525.

Answer

(a) ; always false regardless of the value of .

(b) ; always true regardless of the value of .

(c) ; true if  is true, and false if  is false.

(d) ; true if  is true, and false if  is false

Exercise 
Determine the truth values of these statements:

(a) 

(b) 

Exercise 
Determine the truth values of these statements:

(a) 

(b) 

Answer

(a) false 
(b) true

Exercise 
Construct the truth tables for the following logic statements:

(a) 

p∨ q

q∧ r

(p∧ q)∨ r

∨ rp̄̄̄

2.2.3

p

q

r

p q

r r

p∧ q r

p∨ q r

(p∧ q)∨ r r r

∧ rq̄̄ r r

2.2.4

(0 ∈ Q)∧ (−4 ∈ Z)

(−4 ∈ N)∨ (3 ∈ 2Z)

2.2.5

(−3 >−2)∧ ( > 2)3
–

√

( − ≤ 0)∨ ( = 3+4)42 52 +32 42
− −−−−−

√

2.2.6

p∧ q̄̄
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(b) 

(c) 

Exercise 
Rewrite the following expressions as conjunction:

(a) 

(b) 

(c) 

Answer

(a)  
(b)  
(c) 

Exercise 

In words, the inequality  means “  is between 0 and 1.” Its negation means  is outside this range. Hence, the
negation is “  or .” Find the negation of the following inequalities:

(a) 

(b) 

(c) 

Exercise 

In volleyball it is important to know which team is serving, because a team scores a point only if that team is serving and wins a
volley. If the serving team loses the volley, then the other team gets to serve. Thus, to keep score in a volleyball game between
teams  and , it may be useful to define propositional variables  and , where  is true if team  is serving (hence false if
team  is serving); and  is true if team  wins the current volley (hence false if team  wins it).

Give a formula that is true if team  scores a point and is false otherwise.
Give a formula that is true if team  scores a point and is false otherwise.
Give a formula that is true if the serving team loses the current volley and is false otherwise.
Give a formula whose truth value determines whether the serving team will serve again.

Exercise 
Construct the truth tables for the following logic statements:

(a) 

(b) 

(c) 

(d) 

(e) 

 

 

Exercise 

The exclusive or  operation, denoted , means “  or , but not both.”

Construct the truth table for .

∨ qp̄̄̄

p∧ q¯ ¯¯̄¯̄ ¯̄ ¯̄

2.2.7

4 ≤ x ≤ 7

4 < x ≤ 7

4 ≤ x < 7

(x ≥ 4)∧ (x ≤ 7)
(x > 4)∧ (x ≤ 7)
(x ≥ 4)∧ (x < 7)

2.2.8

0 < x < 1 x x

x ≤ 0 x ≥ 1

0 ≤ x ≤ 4

−2 < x ≤ 5

1.76 ≤ x < 5
–

√

2.2.9

A B p q p A

B q A B

A

B

2.2.10

p∧ p̄̄̄

p∨ p̄̄̄

p∧ (q∨ r)

(p∧ q)∨ (q∧ r)

p∨ (q∧ )r̄̄

2.2.11

p ⊻ q p q

p ⊻ q
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Answer 
 

T T F

T F T

F T T

F F F

This page titled 2.2: Conjunctions and Disjunctions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris
Kwong (OpenSUNY) .
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2.3: Implications
Most theorems in mathematics appear in the form of compound statements called conditional and biconditional statements. We
shall study biconditional statement in the next section. Conditional statements are also called implications.

 

Implication  
An implication is the compound statement of the form “if , then .” It is denoted , which is read as “  implies .” It is false
only when  is true and  is false, and is true in all other situations.

T T T

T F F

F T T

F F T

The statement  in an implication  is called its hypothesis, premise, or antecedent, and  the conclusion or consequence.

Implications come in many disguised forms. There are several alternatives for saying . The most common ones are

 implies ,
 only if ,
 if ,
, provided that .

All of them mean .

Implications play a key role in logical argument. If an implication is known to be true, then whenever the hypothesis is met, the
consequence must be true as well. This is why an implication is also called a conditional statement.

Example 

The quadratic formula asserts that

Consequently, the equation  has two distinct real solutions because its coefficients satisfy the inequality 
.

hands-on exercise 
More generally,

If , then the equation  has two distinct real solutions. In fact, 
, where  are the two distinct roots.

If , then the equation  has only one real solution . In such an event, 
. Consequently, we call  a repeated root.

If , then the equation  has no real solution.

Use these results to determine how many solutions these equations have:

a. 
b. 
c. 

Example 
We have remarked earlier that many theorems in mathematics are in the form of implications. Here is an example:

⇒

p q p ⇒ q p q

p q

p q p ⇒ q

p p ⇒ q q

p ⇒ q

p q

p q

q p

q p

p ⇒ q

2.3.1

−4ac > 0 ⇒ a +bx +c = 0 has two distinct real solutions.b2 x2 (2.3.1)

−3x +1 = 0x2

−4ac > 0b2

2.3.1

−4ac > 0b2 a +bx +c = 0x2

a +bx +c = a(x − )(x − )x2 r1 r2 ≠r1 r2

−4ac = 0b2 a +bx +c = 0x2 r

a +bx +c = a(x −rx2 )2 r

−4ac = 0b2 a +bx +c = 0x2

4 +12x +9 = 0x2

2 −3x −4 = 0x2

+x = −1x2

2.3.2
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If , then .
It means, symbolically, .

hands-on exercise 
Express the following statement in symbols:

If , then .

Example 
If a father promises his kids, “If tomorrow is sunny, we will go to the beach,” the kids will take it as a true statement.
Consequently, if they wake up the next morning and find it sunny outside, they expect they will go to the beach. The father
breaks his promise (hence making the implication false) only when it is sunny but he does not take his kids to the beach.

If it is cloudy outside the next morning, they do not know whether they will go to the beach, because no conclusion can be
drawn from the implication (their father’s promise) if the weather is bad. Nonetheless, they may still go to the beach, even if it
rains! Since their father does not contradict his promise, the implication is still true.

Many students are bothered by the validity of an implication even when the hypothesis is false. It may help if we understand
how we use an implication.

Solution

Assume we want to show that a certain statement  is true.

a. First, we find a result of the form . If we cannot find one, we have to prove that  is true.
b. Next, show that the hypothesis  is fulfilled.
c. These two steps together allow us to draw the conclusion that  must be true.

Consequently, if  is false, we are not expected to use the implication  at all. Since we are not are going to use it, we can
define its truth value to anything we like. Nonetheless, we have to maintain [pg:consistence] consistency with other logical
connectives. We will give a justification of our choice at the end of the next section.

Example 
To show that “if , then ” is true, we need not worry about those -values that are not equal to 2, because the
implication is immediately true if . It suffices to assume that , and try to prove that we will get . Since we do
have  when , the validity of the implication is established.

In contrast, to determine whether the implication “if , then ” is true, we assume , and try to determine
whether  must be 2. Since  makes  true but  false, the implication is false.

In general, to disprove an implication, it suffices to find a counterexample that makes the hypothesis true and the conclusion
false.

hands-on exercise 

Determine whether these two statements are true or false:

a. If , then .
b. If , then .

Explain.

Example 
Although we said examples can be used to disprove a claim, examples alone can never be used as proofs. If you are asked to
show that

you cannot prove it by checking just a few values of , because you may find a counterexample after trying a few more
calculations. Therefore, examples are only for illustrative purposes, they are not acceptable as proofs.

|r| < 1 1 +r + + +⋯ =r2 r3 1
1−r

|r| < 1 ⇒ 1 +r + + +⋯ =r2 r3 1
1−r

2.3.2

x > y > 0 >x2 y2

2.3.3

q

p ⇒ q p ⇒ q

p

q

p p ⇒ q

2.3.4

x = 2 = 4x2 x

x ≠ 2 x = 2 = 4x2

= 4x2 x = 2

= 4x2 x = 2 = 4x2

x x = −2 = 4x2 x = 2

2.3.3

(x −2)(x −3) = 0 x = 2
x = 2 (x −2)(x −3) = 0

2.3.5

if x > 2, then  > 4,x2 (2.3.2)

x
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Example 
The statement

“If a triangle  is isosceles, then two of its angles have equal measure.”

takes the form of an implication , where

In this example, we have to rephrase the statements  and , because each of them should be a stand-alone statement. If we
leave  as “two of its angles have equal measure,” it is not clear what “its” is referring to. In addition, it is a good habit to spell
out the details. It helps us focus our attention on what we are investigating.

Example 

The statement

“A square must also be a parallelogram.”

can be expressed as an implication: “if the quadrilateral  is a square, then the quadrilateral  is a parallelogram.”

Likewise, the statement

“All isosceles triangles have two equal angles.”

can be rephrased as “if the triangle  is isosceles, then the triangle  has two equal angles.” Since we have expressed
the statement in the form of an implication, we no longer need to include the word “all.”

hands-on exercise 
Rewrite each of these logical statements:

a. Any square is also a parallelogram.
b. A prime number is an integer.
c. All polynomials are differentiable.

as an implication . Specify what  and  are.

Example 

What does “  unless ” translate into, logically speaking? We know that  is true, provided that  does not happen. It means, in
symbol, . Therefore,

The quadrilateral  is not a square unless the quadrilateral  is a parallelogram

is the same as saying

If a quadrilateral  is not a parallelogram, then the quadrilateral  is not a square.

Equivalently, “  unless ” means , because  is a necessary condition that prevents  from happening.

 

Converse, Inverse, Contrapositive

Given an implication , we define three related implications:

Its converse is defined as .
Its inverse is defined as .
Its contrapositive is defined as .

Among them, the contrapositive  is the most important one. We shall study it again in the next section.

Example 

2.3.6

P QR

p ⇒ q

p :

q :

The triangle P QR is isosceles

Two of the angles of the triangle P QR have equal measure
(2.3.3)

p q

q

2.3.7

P QRS P QRS

P QR P QR

2.3.1

p ⇒ q p q

2.3.8

p q p q

⇒ pq̄̄

P QRS P QRS

P QRS P QRS

p q ⇒ qp̄̄̄ q p

p ⇒ q

q ⇒ p

⇒p̄̄̄ q̄̄

⇒q̄̄ p̄̄̄

⇒q̄̄ p̄̄̄

2.3.9
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The converse, inverse, and contrapositive of “ ” are listed below.

We can change the notation when we negate a statement. If it is appropriate, we may even rephrase a sentence to make the
negation more readable.

Example 

List the converse, inverse, and contrapositive of the statement “if  is prime, then  is irrational.”

The inverse of an implication is seldom used in mathematics, so we will only study the truth values of the converse and
contrapositive.

An implication and its contrapositive always have the same truth value, but this is not true for the converse. What this means is,
even though we know  is true, there is no guarantee that  is also true. This is an important observation, especially when
we have a theorem stated in the form of an implication. So let us say it again:

Accordingly, if you only know that  is true, do not assume that its converse  is also true. Likewise, if you are asked to
prove that  is true, do not attempt to prove , because these two implications are not the same.

Example 

We know that  does not necessarily mean we also have . This important observation explains the invalidity of the
“proof” of  in this example.

The argument we use here consists of three equations, but they are not individual unrelated equations. They are connected by
implication.

Since implications are not reversible, even though we do have , we cannot use this fact to prove that . After all,
an implication is true if its hypothesis is false. Therefore, having a true implication does not mean that its hypothesis must be
true. In this example, the logic is sound, but it does not prove that .

 

Sufficient, Necessary

There are two other ways to describe an implication  in words. They are completely different from the ones we have seen
thus far. They focus on whether we can tell one of the two components  and  is true or false if we know the truth value of the
other.

 is a sufficient condition for 
 is a necessary condition for .

x > 2 ⇒ > 4x2

(2.3.4)

2.3.5

p p–√

p

T

T

F

F

q

T

F

T

F

p ⇒ q

T

F

T

T

q ⇒ p

T

T

F

T

q̄̄

F

T

F

T

p̄̄̄

F

F

T

T

⇒q̄̄ p̄̄̄

T

F

T

T

(2.3.5)

p ⇒ q q ⇒ p

The converse of a theorem in the form of an implication may not be true. (2.3.6)

p ⇒ q q ⇒ p

p ⇒ q q ⇒ p

2.3.10

p ⇒ q q ⇒ p

21 = 6

21

6
27

=

=
=

6

21
27

21

⇒ 6
⇒ 27

=

=
=

6

21
27

27 = 27 21 = 6

21 = 6

p ⇒ q

p q

p q

q p
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They are difficult to remember, and can be easily confused. You may want to visualize it pictorially:

The idea is, assuming that  is true, then

For  to be true, it is enough to know or show that  is true. Hence, knowing  is true alone is sufficient for us to draw the
conclusion the  must also be true.

For  to be true, it is necessary to have  be true as well. Thus, knowing  is true does not necessarily mean that  must be true.

Example 
Consider the implication

If , we must have . So, knowing  is enough for us to conclude that . We say that  is a sufficient
condition for .

If , it is necessarily true that , because, for example, it is impossible to have . Nonetheless, knowing 
alone is not enough for us to decide whether , because  can be . Therefore,  is not a sufficient condition for 

. Instead,  is only a necessary condition for .

hands-on exercise 

Write these statements:

a. For , it is sufficient that .
b. For , it is necessary that .

in the form of . Be sure to specify what  and  are.

Summary and Review
An implication  is false only when  is true and  is false.
This is how we typically use an implication. Assume we want to show that  is true. We have to find or prove a theorem that
says . Next, we need to show that hypothesis  is met, hence it follows that  must be true.
An implication can be described in several other ways. Can you name a few of them?
Converse, inverse, and contrapositive are obtained from an implication by switching the hypothesis and the consequence,
sometimes together with negation.
In an implication , the component  is called the sufficient condition, and the component  is called the necessary
condition.

Exercises   
Exercise 
Let , , and  represent the following statements:

: Sam had pizza last night.

: Chris finished her homework.

: Pat watched the news this morning.

Write a symbolic statement for each of the following:

a. If Sam had pizza last night then Chris finished her homework.
b. Pat watched the news this morning only if Sam had pizza last night.
c. Chris finished her homework if Sam did not have pizza last night.
d. If it is not the case that Sam had pizza last night, then Pat watched the news this morning.
e. Sam did not have pizza last night and Chris finished her homework implies that Pat watched the news this morning.

sufficient condition ⇒ necessary condition. (2.3.7)

p ⇒ q

q p p

q

p q q p

2.3.11

x = 1 ⇒ = 1.x2 (2.3.8)

x = 1 = 1x2 x = 1 = 1x2 x = 1
= 1x2

x = 1 = 1x2 = 2x2 = 1x2

x = 1 x −1 = 1x2

x = 1 = 1x2 x = 1

2.3.6

> 1x2 x > 1
> 1x2 x > 1

p ⇒ q p q

p ⇒ q p q

q

p ⇒ q p q

p ⇒ q p q

2.3.

2.3.1

p q r

p

q

r

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/23237?pdf


2.3.6 https://math.libretexts.org/@go/page/23237

Answer

(a)  
(b)  
(c)  
(d)  
(e) 

Exercise 

Define the propositional variables as in Problem 1. Express in words the following logic statements:

a. 
b. 
c. 
d. 

Exercise 

Consider the following statements:

: Niagara Falls is in New York.

: New York City is the state capital of New York.

: New York City will have more than 40 inches of snow in 2525.

The statement  is true, and the statement  is false. Represent each of the following statements symbolically. What is their truth
value if  is true? What if  is false?

a. If Niagara Falls is in New York, then New York City is the state capital of New York.
b. Niagara Falls is in New York only if New York City will have more than 40 inches of snow in 2525.
c. Niagara Falls is in New York or New York City is the state capital of New York implies that New York City will have more

than 40 inches of snow in 2525.
d. For New York City to be the state capital of New York, it is necessary that New York City will have more than 40 inches of

snow in 2525.e
e. For Niagara Falls to be in New York, it is sufficient that New York City will have more than 40 inches of snow in 2525.

Answer

(a) , which is false.

(b) , which is true if  is true, and is false if  is false.

(c) , which is true if  is true, and is false if  is false. 
(d) , which is true regardless of the whether  is true or false. 
(e) , which is true regardless of the whether  is true or false.

Exercise 
Express each of the following compound statements symbolically:

a. The line  is perpendicular to the line  and the line  is parallel to the line  implies that  is perpendicular to .
b. If  is greater than 200 and  is an integer, then  is prime.
c. If  is greater than 200, then, if  is prime, it is greater than 210.
d. If , then either  is positive or  is negative or .

Exercise 
Express each of the following compound statements in symbols.

a.  only if .

p ⇒ q

r ⇒ p

⇒ qp̄̄̄

⇒ rp̄̄̄

( ∧ q) ⇒ rp̄̄̄

2.3.2

q ⇒ r

p ⇒ (q ∧ r)
⇒ (q ∨ r)p̄̄̄

r ⇒ (p ∨ q)

2.3.3

p

q

r

p q

r r

p ⇒ q

p ⇒ r r r

(p ∨ q) ⇒ r r r

q ⇒ r r

r ⇒ p r

2.3.4

L1 L2 L2 L3 L1 L3

47089
− −−−−

√ 47089
− −−−−

√ 47089
− −−−−

√

47089
− −−−−

√ 47089
− −−−−

√

−3 +x −3 = 0x3 x2 x x x = 0

2.3.5

−3 +x −3 = 0x3 x2 x = 3
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b. A necessary condition for  is .
c. A sufficient condition for  is .
d. If  is a real number, then  is either rational or irrational.
e. All NFL players are huge.

Answer

(a) 

(b) 

(c) 

(d)  
(e)  A person is an NFL player  that person is huge.

 

Exercise 
Original statement:   If I do not eat diner, I will wake up early.

 

(a) Find the converse, inverse, and contrapositive of the original statement.

(b) Which of the statements you wrote in (a) have the same meaning as the original statement?

Exercise 
Original statement about quadrilateral :   If  is a rectangle, then  is a parallelogram.

 

(a) Find the converse, inverse, and contrapositive of the original statement.

(b) Determine the truth value of the original statement, converse, inverse, and contrapositive.

Answer

(a) converse:       If  is a parallelogram, then  is a rectangle. 
     inverse:          If   is not a rectangle, then  is not a parallelogram. 
    contrapositive: If   is not a parallelogram, then  is not a rectangle. 
(b) The original & the contrapositive are true; the converse & inverse are false.

 

Exercise 
Original statement:   If I do not eat dinner, I will wake up early.

(a) Rewrite the original as an equivalent statement that uses the word "necessary".

(b) Rewrite the original as an equivalent statement that uses the word "sufficient"

Exercise 

Construct the truth tables for the following expressions:

a. 
b. 

Answer

−3 +x −3 = 0x3 x2 x = 3
−3 +x −3 = 0x3 x2 x = 3

eπ eπ

−3 +x −3 = 0 ⇒ x = 3x3 x2

−3 +x −3 = 0 ⇒ x = 3x3 x2

x = 3 ⇒ −3 +x −3 = 0x3 x2

∈ R ⇒ ( ∈ Q∨  is an irrational number)eπ eπ eπ

⇒

2.3.6

2.3.7

ABCD ABCD ABCD

ABCD ABCD

ABCD ABCD

ABCD ABCD

2.3.8

2.3.9

(p ∧ q) ∨ r

(p ∨ q) ⇒ (p ∧ r)
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Exercise 

Construct the truth tables for the following expressions:

a. 
b. 

Exercise 
Determine (you may use a truth table) the truth value of  if

a.  is false
b.  is false

Answer

(a) Using a truth table, we find that the implication  is always true. Hence, no truth value of  would
make  false.

(b) From a truth table, we find that,  is false only when  is false. We can draw the same conclusion
without using any truth table. An implication is false only when its hypothesis (in this case, ) is true and its conclusion
(in this case, ) is false. For  to be true, we need both  and  to be true. Now  is true and  is false require 
to be false.

Exercise 
Assume  is true.

a. If  is true, must  be true? Explain.
b. If  is false, must  be true? Explain.
c. If  is true, must  be false? Explain.
d. If  if false, must  be false? Explain.

This page titled 2.3: Implications is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .
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p ∧ q

T

T

F

F

F

F

F

F

(p ∧ q) ∨ r
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p

T

T

T

T

F

F

F

F

q

T

T

F

F

T

T

F

F

r

T

F

T

F

T

F

T

F

p ∨ q

T

T

T

T

T

T

F

F

p ∧ r

T

F

T

F

F

F

F

F

(p ∨ q) ⇒ (p ∧ r)

T

F

T

F

F

F

T

T

2.3.10

(p ⇒ q) ∨ ( ⇒ q)p̄̄̄

(p ⇒ q) ∧ ( ⇒ q)p̄̄̄

2.3.11

p

(p ∧ q) ⇒ (q ∨ r)
(q ∧ r) ⇒ (p ∧ q)

(p ∧ q) ⇒ (q ∨ r) p

(p ∧ q) ⇒ (q ∨ r)

(q ∧ r) ⇒ (p ∧ q) p

q ∧ r

p ∧ q q ∧ r q r q p ∧ q p

2.3.12

p ⇒ q

p q

p q

q p

q p
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2.4: Biconditional Statements

Biconditional 

The biconditional statement “  if and only if ,” denoted , is true when both  and  carry the same truth value, and is false
otherwise. It is sometimes abbreviated as “  iff .” Its truth table is depicted below.

T T T

T F F

F T F

F F T

Example 

The following biconditional statements

,

,

are true, because, in both examples, the two statements joined by  are true or false simultaneously.

A biconditional statement can also be defined as the compound statement

This explains why we call it a biconditional statement. A biconditional statement is often used to define a new concept.

Example 

A number is even if and only if it is a multiple of 2. Mathematically, this means

It follows that for any integer ,

Since  is an integer (because it is a product of two integers), by definition,  is even. This shows that the product of any
integer with an even integer is always even.

hands-on exercise 
Complete the following statement:

Use this to prove that if  is odd, then  is also odd.

Example 

The operation “exclusive or” can be defined as

See Exercise 2.2.11.

Order of Logical Operations
When we have a complex statement involving more than one logical operation, care must be taken to determine which operation
should be carried out first. The precedence or priority is listed below.

p ⇔ q

p q p ⇔ q p q

p q

p q p ⇔ q

2.4.1

2x −5 = 0 ⇔ x = 5/2

x > y ⇔ x −y > 0

⇔

(p ⇒ q) ∧ (q ⇒ p). (2.4.1)

2.4.2

n is even ⇔ n = 2q for some integer q. (2.4.2)

m

mn = m ⋅ 2q = 2(mq). (2.4.3)

mq mn

2.4.1

n is odd ⇔ . (2.4.4)

n n2

2.4.3

p ⊻ q ⇔ (p ∨ q) ∧ .(p ∧ q)
¯ ¯¯̄¯̄¯̄¯̄¯̄ ¯̄

(2.4.5)
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Connectives Priority

Highest

 , 

 

Lowest

This is the order in which the operations should be carried out if the logical expression is read from left to right. To override the
precedence, use parentheses.

 

Example 
The precedence of logical operations can be compared to those of arithmetic operations.

Operations Priority

 (Negative) Highest

Exponentiation

Multiplication/Division

Addition/Subtraction Lowest

For example, . To evaluate , we have to perform exponentiation first. Hence, .

Another example: the notation  means  raised to the power of , hence ; it should not be interpreted as ,
because .

Example 
It is not true that  can be written as “ ,” because it would mean, technically,

The correct notation is .

hands-on exercise

Insert parentheses in the following formula

to identify the proper procedure for evaluating its truth value. Construct its truth table.

hand-on exercise 
Insert parentheses in the following formula

to identify the proper procedure for evaluating its truth value. Construct its truth table.

 

More on Conditional 
We close this section with a justification of our choice in the truth value of  when  is false. The truth value of  is
obvious when  is true.

¬

∨ ∧ ⋮

⇒

⇔

2.4.4

−

⋮

⋮

y ≠ (yzz−3 )−3 yz−3 y = y ⋅ =z−3 z−3 y

z3

x23
x 23 =x23

x8 (x2)3

( =x2)3 x6

2.4.5

p ⇔ q p ⇒ q ∧ q ⇒ p

p ⇒ (q ∧ q) ⇒ p. (2.4.6)

(p ⇒ q) ∧ (q ⇒ p)

2.4.2

p ⇒ q ∧ r (2.4.7)

2.4.3

p ∧ q ⇔ ∨ .p̄̄̄ q̄̄ (2.4.8)

p ⇒ q

p ⇒ q p p ⇒ q

p

p q p ⇒ q

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/23238?pdf


2.4.3 https://math.libretexts.org/@go/page/23238

T T T

T F F

F T ?

F F ?

We want to decide what are the best choices for the two missing values so that they are consistent with the other logical
connectives. Observe that if  is true, and  is false, then  must be false as well, because if  were true, with  being false,
then the implication  would have been false. For instance, if we promise

“If tomorrow is sunny, we will go to the beach”

but we do not go to the beach tomorrow, then we know tomorrow must not be sunny. This means the two statements  and 
 should share the same truth value.

When both  and  are false, then both  and  are true. Hence  should be true, consequently so is . Thus far, we have
the following partially completed truth table:

T T T

T F F

F T ?

F F T

If the last missing entry is F, the resulting truth table would be identical to that of . To distinguish  from , we
have to define  to be true in this case.

Summary and Review
A biconditional statement  is the combination of the two implications  and .
The biconditional statement  is true when both  and  have the same truth value, and is false otherwise.
A biconditional statement is often used in defining a notation or a mathematical concept.

  Exercises   
Exercise 

Let , , and  represent the following statements:

: Sam had pizza last night.

: Chris finished her homework.

: Pat watched the news this morning.

Write a symbolic statement for each of these:

(a) Sam had pizza last night if and only if Chris finished her homework.

(b) Pat watched the news this morning iff Sam did not have pizza last night.

(c) Pat watched the news this morning if and only if Chris finished her homework and Sam did not have pizza last night as well.

(d) In order for Pat to watch the news this morning, it is necessary and sufficient that both Sam had pizza last night and Chris
finished her homework.

Answer

p q p ⇒ q

p ⇒ q q p p q

p ⇒ q

p ⇒ q

⇒q̄̄ p̄̄̄

p q p̄̄̄ q̄̄ ⇒q̄̄ p̄̄̄ p ⇒ q

p q p ⇒ q

p ⇔ q p ⇔ q p ⇒ q

p ⇒ q

p ⇔ q p ⇒ q q ⇒ p

p ⇔ q p q

2.4.

2.4.1

p q r

p

q

r
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(a)  
(b)  
(c)  
(d) 

Exercise 
Define the propositional variables as in Problem 1. Express in words the statements represented by the following symbolic
statements:

(a)   
(b)  
(c)   
(d) 

Exercise 
Consider the following statements:

: Niagara Falls is in New York.

: New York City is the state capital of New York.

: New York City will have more than 40 inches of snow in 2525.

The statement  is true, and the statement  is false. Represent each of the following statements symbolically. What is their truth
value if  is true? What if  is false?

a. Niagara Falls is in New York if and only if New York City is the state capital of New York.
b. Niagara Falls is in New York iff New York City will have more than 40 inches of snow in 2525.
c. Niagara Falls is in New York or New York City is the state capital of New York if and only if New York City will have more

than 40 inches of snow in 2525.

Answer

(a) , which is false.

(b) , which is true if  is true, and is false if  is false.

(c) , which is true if  is true, and is false if  is false.

Exercise 
Express each of the following compound statements symbolically:

a. The product  if and only if either  or .
b. The integer  if and only if .
c. A necessary condition for  is .
d. A sufficient condition for  is .
e. For , it is both sufficient and necessary to have .
f. The sum of squares  iff both  and  are greater than 1.

Exercise 
Determine the truth values of the following statements (assuming that  and  are real numbers):

a. The product  if and only if either  or .
b. The sum of squares  iff both  and  are greater than 1.
c. .
d. .

p ⇔ q

r ⇔ p̄̄̄

r ⇔ (q ∧ )p̄̄̄

r ⇔ (p ∧ q)

2.4.2

q ⇔ r

p ⇔ (q ∧ r)
⇔ (q ∨ r)p̄̄̄

r ⇔ (p ∨ q)

2.4.3

p

q

r

p q

r r

p ⇔ q

p ⇔ r r r

(p ∨ q) ⇔ r r r

2.4.4

xy = 0 x = 0 y = 0
n = 4 7n −5 = 23

x = 2 − −12 = 0x4 x2

x = 2 − −12 = 0x4 x2

− −12 = 0x4 x2 x = 2
+ > 1x2 y2 x y

2.4.5

x y

xy = 0 x = 0 y = 0
+ > 1x2 y2 x y

−4x +3 = 0 ⇔ x = 3x2

> ⇔ x > yx2 y2
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Answer

(a) true (b) false (c) false (d) false

Exercise 

Determine the truth values of the following statements (assuming that  and  are real numbers):

a.  is a vowel if and only if  is a consonant.
b.  if and only if  and .
c.  if and only if .
d.  if and only if  and  are both positive.

Exercise 

We have seen that a number  is even if and only if  for some integer . Accordingly, what can you say about an odd
number?

Answer

We say  is odd if and only if  for some integer .

Exercise 
We also say that an integer  is even if it is divisible by 2, hence it can be written as  for some integer , where 
represents the quotient when  is divided by 2. Thus,  is even if it is a multiple of 2. What if the integer  is a multiple of 3?
What form must it take? What if  is not a multiple of 3?

This page titled 2.4: Biconditional Statements is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris
Kwong (OpenSUNY) .

2.4.6

x y

u b

+ = 0x2 y2 x = 0 y = 0
−4x +4 = 0x2 x = 2

xy ≠ 0 x y

2.4.7

n n = 2q q

n n = 2q +1 q

2.4.8

n n = 2q q q

n n n

n
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2.5: Logical Equivalences

Tautology & Contradiction
Definition
A tautology is a proposition that is always true, regardless of the truth values of the propositional variables it contains.

Definition
A proposition that is always false is called a contradiction.

 A proposition that is neither a tautology nor a contradiction is called a contingency. The term contingency is not as widely used as
the terms tautology and contradiction.

Example 
From the following truth table

we gather that  is a tautology, and  is a contradiction.

In words,  says that either the statement  is true, or the statement  is true (that is,  is false). This claim is always true.

The compound statement  claims that  is true, and at the same time,  is also true (which means  is false). This is clearly
impossible. Hence,  must be false.

 

Example 

Show that  is a tautology.

Answer

We can use a truth table to verify the claim.

Note how we work on each component of the compound statement separately before putting them together to obtain the final
answer.

Example 
Show that the argument

“If  and , then . Therefore, if not , then not  or not .”

is valid. In other words, show that the logic used in the argument is correct.

Answer

Symbolically, the argument says

2.5.1

p

T

F

p̄̄̄

F

T

p ∨ p̄̄̄

T

T

p ∧ p̄̄̄

F

F

(2.5.1)

p ∨ p̄̄̄ p ∧ p̄̄̄

p ∨ p̄̄̄ p p̄̄̄ p

p ∧ p̄̄̄ p p̄̄̄ p

p ∧ p̄̄̄

2.5.2

(p ⇒ q) ⇔ ( ⇒ )q̄̄ p̄̄̄

p

T

T

F

F

q

T

F

T

F

p ⇒ q

T

F

T

T

q̄̄

T

T

F

T

p̄̄̄

T

F

T

T

⇒q̄̄ p̄̄̄

F

F

T

T

(p ⇒ q) ⇔ ( ⇒ )q̄̄ p̄̄̄

T

T

T

T

(2.5.2)

2.5.3

p q r r p q

[(p ∧ q) ⇒ r] ⇒ [ ⇒ ( ∨ )].r̄̄ p̄̄̄ q̄̄ (2.5.3)
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We want to show that it is a tautology. It is easy to verify with a truth table. We can also argue that this compound statement
is always true by showing that it can never be false.

Suppose, on the contrary, that ([eqn:tautology]) is false for some choices of , , and . Then

For the second implication to be false, we need

They in turn imply that  is false, and both  and  are false; hence both  and  are true. This would make 
false, contradicting the assumption that it is true. Thus, ([eqn:tautology]) cannot be false, it must be a tautology.

hands-on exercise 
Use a truth table to show that

is a tautology.

 

Answer

We need eight combinations of truth values in , , and . We list the truth values according to the following convention. In
the first column for the truth values of , fill the upper half with T and the lower half with F. In the next column for the truth
values of , repeat the same pattern, separately, with the upper half and the lower half. So we split the upper half of the
second column into two halves, fill the top half with T and the lower half with F. Likewise, split the lower half of the second
column into two halves, fill the top half with T and the lower half with F. Repeat the same pattern with the third column for
the truth values of , and so on if we have more propositional variables.

Complete the following table:

Question: If there are four propositional variables in a proposition, how many rows are there in the truth table?

 

Biconditional and Equivalence
Note
Two logical formulas  and  are logically equivalent, denoted  (defined in section 2.2) if and only if   is a
tautology.

We are not saying that  is equal to . Since  and  represent two different statements, they cannot be the same. What we are
saying is, they always produce the same truth value, regardless of the truth values of the underlying propositional variables. That is
why we write  instead of .

Example 

p q r

(p ∧ q) ⇒ r must be true, and ⇒ ( ∨ ) must be false.r̄̄ p̄̄̄ q̄̄ (2.5.4)

to be true, and ∨ to be false.r̄̄ p̄̄̄ q̄̄ (2.5.5)

r p̄̄̄ q̄̄ p q (p ∧ q) ⇒ r

2.5.1

[(p ∧ q) ⇒ r] ⇒ [ ⇒ ( ∨ )]r̄̄ p̄̄̄ q̄̄ (2.5.6)

p q r

p

q

r

p

T

T

T

T

F

F

F

F

q

T

T

F

F

T

T

F

F

r

T

F

T

F

T

F

T

F

p ∧ q (p ∧ q) ⇒ r r̄̄ p̄̄̄ q̄̄ ∨p̄̄̄ q̄̄ ⇒ ( ∨ )r̄̄ p̄̄̄ q̄̄ [(p ∧ q) ⇒ r] ⇒ [ ⇒ ( ∨ )]r̄̄ p̄̄̄ q̄̄

(2.5.7)

p q p ≡ q, p ⇔ q

p q p q

p ≡ q p = q

2.5.4
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We have learned that

which is the reason why we call  a biconditional statement.

Example 

 

Use truth tables to verify the following equivalent statements.

. [equiv1]
. [equiv2]

Answer

The truth tables for (a) and (b) are depicted below.

Example ([equiv1]) is an important result. It says that  is true when one of these two things happen: (i) when  is
false, (ii) otherwise (when  is true)  must be true.

hands-on exercise 

Use truth tables to establish these logical equivalences.

a. 
b. 

c. 
d. 

 

Answer

We have set up the table for (a), and leave the rest to you.

hands-on exercise 
 

The logical connective exclusive or, denoted , means either  or  but not both. Consequently,

Construct a truth table to verify this claim

p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p), (2.5.8)

p ⇔ q

2.5.5

p ⇒ q ≡ ∨ qp̄̄̄

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p

T

T

F

F

q

T

F

T

F

p ⇒ q

T

F

T

T

p̄̄̄

F

F

T

T

∨ qp̄̄̄

T

F

T

T

(2.5.9)

(2.5.10)

p ⇒ q p

p q

2.5.2

p ⇒ q ≡ ⇒q̄̄ p̄̄̄

p ∨ p ≡ p

p ∧ q ≡ ∨p̄̄̄ q̄̄
¯ ¯¯̄¯̄¯̄¯̄¯

p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p)

p

T

T

F

F

q

T

F

T

F

p ⇒ q q̄̄ p̄̄̄ ⇒q̄̄ p̄̄̄ (2.5.11)

2.5.3

p ⊻ q p q

p ⊻ q ≡ (p ∨ q) ∧ ≡ (p ∧ ) ∨ ( ∧ q).(p ∧ q)
¯ ¯¯̄¯̄¯̄¯̄¯̄ ¯̄

q̄̄ p̄̄̄ (2.5.12)
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Properties
Properties of Logical Equivalence. Denote by  and  a tautology and a contradiction, respectively. We have the following
properties for any propositional variables , , and .

1. Commutative properties: 

2. Associative properties: 

3. Distributive laws: 

4. Idempotent laws: 

5. De Morgan’s laws: 

6. Laws of the excluded middle, or inverse laws: 

7. Identity laws: 

8. Domination laws: 

9. Equivalence of an implication and its contrapositive: .

10. Writing an implication as a disjunction: .

11. The negation of an implication: 

Be sure you understand and memorize the last three equivalences, because we will use them frequently in the rest of the course.

It may not be easy to memorize the names of all these properties; however, they should all make sense to you.  The important name
is De Morgan's laws.  Let us explain them in words, and compare them to similar operations on the real numbers,

1. Commutative properties: In short, they say that “the order of operation does not matter.” It does not matter which of the two
logical statements comes first, the result from conjunction and disjunction always produces the same truth value. Compare this
to addition of real numbers: . Subtraction is not commutative, because it is not always true that .
This explains why we have to make sure that an operation is commutative.

2. Associative properties: Roughly speaking, these properties also say that “the order of operation does not matter.” However,
there is a key difference between them and the commutative properties.

Commutative properties apply to operations on two logical statements, but associative properties involves three logical
statements. Since  and  are binary operations, we can only work on a pair of statements at a time. Given the three
statements , , and , appearing in that order, which pair of statements should we operate on first? The answer is: it does
not matter. It is the order of grouping (hence the term associative) that does not matter in associative properties.

The important consequence of the associative property is: since it does not matter on which pair of statements we should
carry out the operation first, we can eliminate the parentheses and write, for example,

without worrying about any confusion.

Not all operations are associative. Subtraction is not associative. Given three numbers 5, 7, and 4, in that order, how should
we carry out two subtractions? Which interpretation should we use:

T F

p q r

p ∨ q ≡ q ∨ p,

p ∧ q ≡ q ∧ p.

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r),

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r).

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r),

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

p ∨ p ≡ p,

p ∧ p ≡ p.

≡ ∧ ,p ∨ q¯ ¯¯̄¯̄ ¯̄ ¯̄ p̄̄̄ q̄̄

≡ ∨ .p ∧ q¯ ¯¯̄¯̄ ¯̄ ¯̄ p̄̄̄ q̄̄

p ∨ ≡ T ,p̄̄̄

p ∧ ≡ F .p̄̄̄

p ∨ F ≡ p,

p ∧ T ≡ p.

p ∨ T ≡ T ,

p ∧ F ≡ F .

p ⇒ q ≡ ⇒q̄̄ p̄̄̄

p ⇒ q ≡ ∨ qp̄̄̄

≡ p ∧p ⇒ q¯ ¯¯̄¯̄¯̄¯̄¯̄¯ q̄̄

x +y = y +x x −y = y −x

∧ ∨

p q r

p ∨ q ∨ r (2.5.13)

(5 −7) −4, or 5 −(7 −4)? (2.5.14)
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Since they lead to different results, we have to be careful where to place the parentheses.

3. Distributive laws: When we mix two different operations on three logical statements, one of them has to work on a pair of
statements first, forming an “inner” operation. This is followed by the “outer” operation to complete the compound statement.
Distributive laws say that we can distribute the “outer” operation over the inner one.

4. Idempotent laws: When an operation is applied to a pair of identical logical statements, the result is the same logical statement.
Compare this to the equation , where  is a real number. It is true only when  or . But the logical
equivalences  and  are true for all .

5. De Morgan’s laws: When we negate a disjunction (respectively, a conjunction), we have to negate the two logical statements,
and change the operation from disjunction to conjunction (respectively, from conjunction to a disjunction).

6. Laws of the excluded middle, or inverse laws: Any statement is either true or false, hence  is always true. Likewise, a
statement cannot be both true and false at the same time, hence  is always false.

7. Identity laws: Compare them to the equation : the value of  is unchanged after multiplying by 1. We call the number
1 the multiplicative identity. For logical operations, the identity for disjunction is F, and the identity for conjunction is T.

8. Domination laws: Compare them to the equation  for real numbers: the result is always 0, regardless of the value .
The “zero” for disjunction is T, and the “zero” for conjunction is F.

Example 
What is the negation of ? Give a logical explanation as well as a graphical explanation.

Answer

The inequality  means

Its negation, according to De Morgan’s laws, is

The inequality  yields a closed interval. Its negation yields two open intervals. Their graphical representations on
the real number line are depicted below.

(130,60)(-20,-45) (-20,0)(1,0)130 (30, 0)(30,0)2 (20,-25)(20,20)  (50,-25)(20,20)  ( 0,-50)(90,20)  (30,
0)(1,0)30

(130,60)(-20,-45) (-20,0)(1,0)130 (30, 0)(30,0)2 (20,-25)(20,20)  (50,-25)(20,20)  ( 0,-50)(90,20)  (-20,
0)(1,0)48 ( 62, 0)(1,0)48

Take note of the two endpoints 2 and 3. They change from inclusion to exclusion when we take negation.

hands-on exercise 
Since  means “  and ,” its negation should be “  or ”.  Explain why it is inappropriate, and
indeed incorrect, to write “ .”

hands-on exercise 
Expand .

Example 
 

We have used a truth table to verify that

= xx2 x x = 0 x = 1

p ∨ p ≡ p p ∧ p ≡ p p

p ∨ p̄̄̄

p ∧ p̄̄̄

x ⋅ 1 = x x

x ⋅ 0 = 0 x

2.5.6

2 ≤ x ≤ 3

2 ≤ x ≤ 3

(x ≥ 2) ∧ (x ≤ 3). (2.5.15)

(x < 2) ∨ (x > 3). (2.5.16)

2 ≤ x ≤ 3

2 3 (x ≥ 2) ∧ (x ≤ 3)

2 3 (x < 2) ∨ (x > 3)

2.5.4

0 ≤ x ≤ 1 x ≥ 0 x ≤ 1 x < 0 x > 1

0 > x > 1

2.5.5

(p ∨ q) ∧ (r ∨ s)

2.5.7

[(p ∧ q) ⇒ r] ⇒ [ ⇒ ( ∨ )]r̄̄ p̄̄̄ q̄̄ (2.5.17)
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is a tautology. We can use the properties of logical equivalence to show that this compound statement is logically equivalent to 
. This kind of proof is usually more difficult to follow, so it is a good idea to supply the explanation in each step. Here is a

complete proof:

This is precisely what we called the left-to-right method for proving an identity (in this case, a logical equivalence).

Example 

Write  as a conjunction.

 

Answer

It is important to remember that

and

either. Instead, since , it follows from De Morgan’s law that

Alternatively, we can argue as follows. Interpret  as saying  is false. This requires  to be true and  to be false,
which translates into . Thus, .

 

Summary and Review
Two logical statements are logically equivalent if they always produce the same truth value.
Consequently,  is same as saying  is a tautology.
Beside distributive and De Morgan’s laws, remember these two equivalences as well; they are very helpful when dealing with
implications.

Exercises     
Exercise 

Use a truth table to verify the De Morgan’s law .

Answer

Exercise 

Use truth tables to verify the two associative properties.

Exercise 

T

(2.5.18)

2.5.8

p ⇒ q¯ ¯¯̄¯̄¯̄¯̄¯̄¯

≢ q ⇒ p,p ⇒ q¯ ¯¯̄¯̄¯̄¯̄¯̄¯ (2.5.19)

≢ ⇒p ⇒ q¯ ¯¯̄¯̄¯̄¯̄¯̄¯ p̄̄̄ q̄̄ (2.5.20)

p ⇒ q ≡ ∨ qp̄̄̄

≡ ≡ p ∧ .p ⇒ q¯ ¯¯̄¯̄¯̄¯̄¯̄¯ ∨ qp̄̄̄
¯ ¯¯̄¯̄ ¯̄ ¯̄

q̄̄ (2.5.21)

p ⇒ q¯ ¯¯̄¯̄¯̄¯̄¯̄¯ p ⇒ q p q

p ∧ q̄̄ ≡ p ∧p ⇒ q¯ ¯¯̄¯̄¯̄¯̄¯̄¯ q̄̄

p ≡ q p ⇔ q

p ⇒ q ≡ ⇒ and p ⇒ q ≡ ∨ q.q̄̄ p̄̄̄ p̄̄̄ (2.5.22)

2.5.
2.5.1

≡ ∧p ∨ q¯ ¯¯̄¯̄ ¯̄ ¯̄ p̄̄̄ q̄̄

p

T

T

F

F

q

T

F

T

F

p ∨ q

T

T

T

F

p ∨ q¯ ¯¯̄¯̄ ¯̄ ¯̄

F

F

F

T

p̄̄̄

F

F

T

T

q̄̄

F

T

F

T

∧p̄̄̄ q̄̄

F

F

F

T

2.5.2

2.5.3
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Construct a truth table for each formula below. Which ones are tautologies?

a. 
b. 
c. 

Answer

Only (b) is a tautology, as indicated in the truth tables below.

(a) 

(b) 

(c) 

Exercise 

Use truth tables to verify these logical equivalences.

a. 
b. 
c. 

 

Exercise 
Use only the properties of logical equivalences to verify (b) and (c) in Problem 4.

Answer

The proofs are displayed below without explanations. Be sure to fill them in.

(b) 

( ∨ q) ⇒ pp̄̄̄

(p ⇒ q) ∨ (p ⇒ )q̄̄

(p ⇒ q) ⇒ r

p

T

T

F

F

q

T

F

T

F

p̄̄̄

F

F

T

T

∨ qp̄̄̄

T

F

T

T

( ∨ q) ⇒ pp̄̄̄

T

T

F

F

p

T

T

F

F

q

T

F

T

F

p ⇒ q

T

F

T

T

q̄̄

F

T

F

T

p ⇒ q̄̄

F

T

T

T

(p ⇒ q) ∨ (p ⇒ )q̄̄

T

T

T

T

p

T

T

T

T

F

F

F

F

q

T

T

F

F

T

T

F

F

r

T

F

T

F

T

F

T

F

p ⇒ q

T

T

F

F

T

T

T

T

(p ⇒ q) ⇒ r

T

F

T

T

T

F

T

F

2.5.4

(p ∧ q) ⇔ p ≡ p ⇒ q

(p ∧ q) ⇒ r ≡ p ⇒ ( ∨ r)q̄̄

(p ⇒ ) ∧ (p ⇒ ) ≡q̄̄ r̄̄ p ∧ (q ∨ r)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄

2.5.5

(p ∧ q) ⇒ r ≡

≡

≡

≡

∨ rp ∧ q¯ ¯¯̄¯̄ ¯̄ ¯̄

( ∨ ) ∨ rp̄̄̄ q̄̄

∨ ( ∨ r)p̄̄̄ q̄̄

p ⇒ ( ∨ r)q̄̄
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(c) 

Exercise 
 

Determine whether formulas  and  are logically equivalent (you may use truth tables or properties of logical equivalences).

Exercise 
Find the converse, inverse, and contrapositive of these implications.

a. If triangle  is isosceles and contains an angle of 45 degrees, then  is a right triangle.
b. If quadrilateral  is a square, then it is both a rectangle and a rhombus.
c. If quadrilateral  has two sides of equal length, then it is either a rectangle or a rhombus.

Answer

(a)

Converse: If triangle  is a right triangle, then  is isosceles

 and contains an angle of 45 degrees.

Inverse: If triangle  is not isosceles or does not contain an angle

 of 45 degrees, then  is not a right triangle.

Contrapositive: If triangle  is not a right triangle, then  is not isosceles

 or does not contain an angle of 45 degrees.

(b)

Converse: If quadrilateral  is both a rectangle and a rhombus,

 then  is a square.

Inverse: If quadrilateral  is not a square,

 then it is not a rectangle or not a rhombus.

Contrapositive: If quadrilateral  is not a rectangle or not a rhombus,

 then  is not a square.

 

(c)

Converse: If quadrilateral  is either a rectangle or a rhombus,

(p ⇒ ) ∧ (p ⇒ )q̄̄ r̄̄ ≡

≡

≡

≡

( ∨ ) ∧ ( ∨ )p̄̄̄ q̄̄ p̄̄̄ r̄̄

∨ ( ∧ )p̄̄̄ q̄̄ r̄̄

∨p̄̄̄ q ∨ r¯ ¯¯̄¯̄¯̄¯̄

p ∧ (q ∨ r)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄

2.5.6

u v

u : (p ⇒ q) ∧ (p ⇒ )q̄̄ v : p̄̄̄

u : p ⇒ q v : q ⇒ p

u : p ⇔ q v : q ⇔ p

u : (p ⇒ q) ⇒ r v : p ⇒ (q ⇒ r)

2.5.7

ABC ABC

ABCD

ABCD

ABC ABC

ABC

ABC

ABC ABC

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD
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 then  has two sides of equal length.

Inverse: If quadrilateral  is does not have two sides of equal length,

 then it is not a rectangle and it is not a rhombus.

Contrapositive: If quadrilateral  is not a rectangle and it is not a rhombus,

 then  is does not have two sides of equal length.

 

Exercise 

Negate the following implications:

a. .
b. If  is a square, then  is a parallelogram.
c. If  is prime, then  is composite.
d. If  and  are integers such that , then either  or .

Exercise 

Determine whether the following formulas are true or false:

a. 
b. 
c. 

Answer

(a) false (b) true (c) false

Exercise 

Determine whether the following formulas are true or false:

a. 
b. 
c. 

Exercise 

Which of the following statements are equivalent to the statement “if , then ”?

a. If , then .
b. If , then .
c. If , then .
d. If , then .

Answer

Only (b).

Exercise 

Determine whether the following formulas are tautologies, contradictions, or neither:

a. 
b. 
c. 

Exercise 

ABCD

ABCD

ABCD

ABCD

2.5.8

> 0 ⇒ x > 0x2

P QRS P QRS

n > 1 n +1

x y xy ≥ 1 x ≥ 1 y ≥ 1

2.5.9

≡ ⇔p ⇔ q¯ ¯¯̄¯̄¯̄¯̄¯̄¯ p̄̄̄ q̄̄

(p ⇒ q) ∧ (p ⇒ ) ≡q̄̄ p̄̄̄

p ⇒ q ≡ q ⇒ p

2.5.10

(p ⇒ q) ⇒ r ≡ p ⇒ (q ⇒ r)

p ⇒ (q ∨ r) ≡ (p ⇒ q) ∨ (p ⇒ r)

p ⇒ (q ∧ r) ≡ (p ⇒ q) ∧ (p ⇒ r)

2.5.11

> 0x2 x > 0

x > 0 > 0x2

x ≤ 0 ≤ 0x2

≤ 0x2 x ≤ 0

≯ 0x2 x ≯ 0

2.5.12

(p ⇒ q) ∧ p̄̄̄

(p ⇒ ) ∧ (p ∧ q)q̄̄

(p ⇒ ) ∧ qq̄̄

2.5.13
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Simplify the following formulas:

a. 

b. 
c. 

Answer

(a)  
(b)  
(c) 

Exercise 

Simplify the following formulas:

a. 

b. 
c. 

 

Exercise 

T stands for a tautology & F stands for a contradiction. 

True or False?

a. 

b. 

c.  

d. 

Answer

(a) true (b) true (c) false (d) false

 

Exercise 
T stands for a tautology & F stands for a contradiction. 

Simplify to an equivalent expression that is a single letter (T, F, p or ~p )

a. 

b.  

c.  

d. 

e. 

f. 

This page titled 2.5: Logical Equivalences is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

p ∧ (p ∧ q)

∨ qp̄̄̄
¯ ¯¯̄¯̄ ¯̄ ¯̄

p ⇒ q̄̄
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

p ∧ q

p ∧ q̄̄

p ∧ q

2.5.14

(p ⇒ ) ∧ ( ⇒ p)q̄̄ q̄̄

p ∧ q̄̄
¯ ¯¯̄¯̄¯̄¯̄¯

p ∧ ( ∨ q)p̄̄̄

2.5.15

F → q̄̄

p ∨ T

F ∧ p

∨ FT
¯¯̄̄

2.5.16

∨ F ≡T
¯¯̄̄

T ∧ p ≡

F ∧ ≡p̄̄̄

F ∨ ≡p̄̄̄

(F ∨ T ) ∨ F ≡

(F ∨ T ) ∧ T ≡
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2.6 Arguments and Rules of Inference
In this section we will look at how to test if an argument is valid.  This is a test for the structure of the argument.  A valid argument
does not always mean you have a true conclusion; rather, the conclusion of a valid argument must be true if all the premises are
true. We will also look at common valid arguments, known as Rules of Inference as well as common invalid arguments, known as
Fallacies.

 

Arguments
 

Definition
An argument is a set of initial statements, called premises, followed by a conclusion.

 

Definition
An argument is valid if and only if in every case where all the premises are true, the conclusion is true.  Otherwise, the
argument is invalid.

 

Here is an example:

If I read my text, I will understand how to do my homework.

I understand how to do my homework.

Therefore, I read my text.

 

Our first premise: is If I read my text, then I understand how to do my homework. 

Our second premise is:I understand how to do my homework.

Our conclusion is I read my text.

 

Let's use t means I read my text and u means I understand how to do my homework.

Symbolically, our argument is:

 

Testing the validity of an argument by truth table.

 

We represent this argument by working out its premises and conclusion on a truth table:

T T T T T

T F F F T

F T T T F

t → u

u

∴ t

t u t → u u t
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F F T F F

 

Notice we repeat the column for  and the column for  because one is a premise and one is a conclusion.

 

Since a valid argument must have a true conclusion in all cases where the premises are true, we need to examine the rows where all
premises are true.

Definition
Given a truth table representing an argument, the rows where all the premises are true are called the critical rows.

 

We test an argument by considering all the critical rows.  If the conclusion is true in all critical rows, then the argument is valid. 
This is another way of saying the conclusion of a valid argument must be true in every case where all the premises are true. 

Look for rows where all premises are true.

 

                                                                                                                 premise 1                                        premise 2                         
        conclusion

T T T T T

T F F F T

F T T T F

F F T F F

 

We see that the 1st and 3rd rows are critical rows.  In the 1st row, the conclusion is true.  However, in the 3rd row, a critical row, the
conclusion is false.

Thus this argument is ________________. 

Answer

INVALID

 

Example 
Consider this argument.

If Pat goes to the store, Pat will buy $1,000,000 worth of food.

Pat goes to the store.

Therefore, Pat buys $1,000,000 worth of food.

 

This is a valid argument (you can test it on a truth table). 

However, even though Pat goes to the store, Pat does not buy $1,000,000 worth of food.  The conclusion is false.

How can the conclusion of a valid argument be false?

t u t → u u t

u t

t u t → u u t

1
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Solution

The validity of an argument refers to its structure.  Given a valid argument, the conclusion must be true if the premises are
true. In this case the first premise is NOT true, and thus the conclusion does not need to be true.  
The conclusion of a valid argument can be false if one or more of the premises is false.

 

 

Rules of Inference
 

A number of valid arguments are very common and are given names.  Know these four:

 

Modus Ponens

 

Modus Tollens

~

 

Elimination

~

 

Transitivity

 

As you think about the rules of inference above, they should make sense to you.  Furthermore, each one can be proved by a truth
table.

If you see an argument in the form of a rule of inference, you know it's valid.

Example 

Explain why this argument is valid:

If I go to the movies, I will not do my homework.

I do my homework.

Therefore, I did not go to the movies.

p → q

p

∴ q

p → q

q

∴ ~p

p ∨ q

p

∴ q

p → q

q → r

∴ p → r

2
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Solution

This is valid by Modus Tollens.

 

Fallacies 
Fallacies are invalid arguments.  Know the names of these two common fallacies.

 

Converse Error

 

Inverse Error

~

 

If you think about the converse and inverse (and that they do not have the same meaning as the original implication) you can see
why these fallacies have these names. You can use a truth table to show these fallacies are arguments that are_________________.

Answer

INVALID

 

 

Example 

Explain why this argument is valid or invalid:

If I go to the movies, I will not do my homework.

I did not go to the movies.

Therefore, I did do my homework.

Solution

This is invalid; it is an inverse error.

 

 

Exercises   
Exercise 
True or False?

(a) Given a valid argument with true premises, the conclusion must be true.

p → q

q

∴ p

p → q

p

∴ ~q

3

1
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(b) Given a valid argument with false premises, the conclusion must be false.

(c) Given an invalid argument, the conclusion must be false.

Answer

(a) true  (b) false  (c) false

Exercise 

Decide if the following arguments are valid or invalid.  State the Rule of Inference of fallacy used.

(a)

If it snows, then school is closed.

School is open.

Therefore it is not snowing.

 

(b)

My pet is a cat or my pet is a dog.

My pet is not a dog.

Therefore my pet is a cat.

 

(c)

If the movie is long, I will fall asleep.

I do fall asleep.

Therefore the movie was long.

Answer

(a) VALID, Modus Tollens  
(b) VALID, Elimination 
(c) INVALID, Converse Error

 

Exercise 
Use a truth table to determine if this argument is valid or invalid. Include a clear explanation.

Answer

As seen below, there are three critical rows, namely the 4th, 6th and 8th rows. We can see that in every case where all the
premises are true, the conclusion is also true. Thus, this is a valid argument.

                                                                                                                                          premise 1            premise 2                   
                       conclusion

T T T F T T F T F

3

5

∨ (q → r)p̄̄̄

r̄̄

∴ p ∧ q
¯ ¯¯̄¯̄ ¯̄ ¯̄

p q r p̄̄̄ q → r ∨ (q → r)p̄̄̄ r̄̄ p ∧ q p ∧ q
¯ ¯¯̄¯̄ ¯̄ ¯̄

https://libretexts.org/
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T T F F F F T T F

F T T T T T F F T

F T F T F T T F T

T F T F T T F F T

T F F F T T T F T

F F T T T T F F T

F F F T T T T F T

 

Exercise 

Use a truth table and an explanation to prove Modus Ponens is a valid form of an argument.

Answer

As seen below, the only critical row is the first row. We can see that in the one case that all the premises are true, the
conclusion is also true. Thus, Modus Ponens has the form of a valid argument.

                                                                                                                 premise 1                                        premise 2               
                  conclusion

T T T T T

T F F T T

F T T F F

F F T F F

 

 

This page titled 2.6 Arguments and Rules of Inference is shared under a not declared license and was authored, remixed, and/or curated by Harris
Kwong (OpenSUNY) .

p q r p̄̄̄ q → r ∨ (q → r)p̄̄̄ r̄̄ p ∧ q p ∧ q¯ ¯¯̄¯̄ ¯̄ ¯̄

7

p q p → q p q
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2.7: Quantiers

Propositional Function

The expression

is neither true nor false. In fact, we cannot even determine its truth value unless we know the value of . This is an example of a
propositional function, because it behaves like a function of , it becomes a proposition when a specific value is assigned to .
Propositional functions are also called predicates.

Example 
Denote the propositional function “ ” by . We often write

It is not a proposition because its truth value is undecidable, but ,  and  are propositions.

Example 
Define

Which of the following are propositions; which are not?

a. 
b. 
c. 
d. 

For those that are, determine their truth values.

Answer

Both (a) and (b) are not propositions, because they contain at least one variable. Both (c) and (d) are propositions;  is
false, and  is true.

hands-on Exercise 
Determine the truth values of these statements, where  is defined in Example .

a. 
b. 
c. 

Although a propositional function is not a proposition, we can form a proposition by means of quantification. The idea is to
specify whether the propositional function is true for all or for some values that the underlying variables can take on.

Universal Quantifier
Definition
The universal quantification of  is the proposition in any of the following forms:

 is true for all values of .
For all , .
For each , .
For every , .
Given any , .

x > 5 (2.7.1)

x

x x

2.7.1

x > 5 p(x)

p(x) : x > 5. (2.7.2)

p(6) p(3) p(−1)

2.7.2

q(x, y) : x+y = 1. (2.7.3)

q(x, y)
q(x, 3)
q(1, 1)
q(5, −4)

q(1, 1)
q(5, −4)

2.7.1

q(x, y) 2.7.2

q(5, −7)
q(−6, 7)
q(x+1, −x)

p(x)

p(x) x

x p(x)
x p(x)
x p(x)
x p(x)
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All of them are symbolically denoted by

which is pronounced as

“for all , ”.

The symbol  is called the universal quantifier, and can be extended to several variables.

Example 
The statement

“For any real number , we always have ”

is true. Symbolically, we can write

The second form is a bit wordy, but could be useful in some situations.

Example 
The statement

is false because  is not always greater than 5. To disprove a claim, it suffices to provide only one counterexample. We can use 
 as a counterexample.

However, examples cannot be used to prove a universally quantified statement. Consider the statement

By direct calculations, one may demonstrate that  is true for many -values. But it does not prove that it is true for every 
, because there may be a counterexample that we have not found yet. We have to use mathematical and logical argument to

prove a statement of the form “ .”

Example 
The statement

“Every Discrete Mathematics student has taken Calculus I and Calculus II”

is clearly a universally quantified proposition. To express it in a logical formula, we can use an implication:

An alternative is to say

where  represents the set of all Discrete Mathematics students. Although the second form looks simpler, we must define what 
 stands for.

 

Existential Quantifier
Definition
The existential quantification of  takes one of these forms:

There exists an  such that .
For some , .
There is some  such that .

∀x p(x), (2.7.4)

x p(x)

∀

2.7.3

x ≥ 0x2

∀x ∈ R ( ≥ 0), or ∀x (x ∈ R ⇒ ≥ 0).x2 x2 (2.7.5)

2.7.4

∀x ∈ R (x > 5) (2.7.6)

x

x = 4

∀x ∈ R ( ≥ 0).x2 (2.7.7)

≥ 0x2 x

x

∀x p(x)

2.7.5

∀x (x is a Discrete Mathematics student ⇒ x has taken Calculus I and Calculus II) (2.7.8)

∀x ∈ S (x has taken Calculus I and Calculus II) (2.7.9)

S

S

p(x)

x p(x)
x p(x)

x p(x)
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We write, in symbol,

which is pronounced as

“There exists  such that .”

The symbol  is called the existential quantifier. It can be extended to several variables.

Notice the pronouciation includes the phrase "such that".  Don't forget to say that phrase as part of the verbalization of a
symbolic existential statement.

Example 

To prove that a statement of the form “ ” is true, it suffices to find an example of  such that  is true. Using this
guideline, can you determine whether these two propositions

a. 
b. 

are true?

Answer
a. True. For example: .
b. True. For example: .

 

Example 

The proposition

“There exists a prime number  such that  is also prime”

is true. We call such a pair of primes twin primes.

hands-on Exercise 
Name a few more examples of twin primes.

Example 
The proposition

“There exists a real number  such that ”

can be expressed, symbolically, as

Notice that in an existential quantification, we use  instead of  to specify that  is a real number.

hands-on Exercise 

Determine the truth value of each of the following propositions:

a. For any prime number , the number  is composite. 
b. For any prime number , the number  is composite. 
c. There exists an integer  such that  is even.
d. For all integers , the integer  is even. 
e. For any real number , if  is an integer, then  is also an integer.

hands-on Exercise 

The proposition

∃x p(x), (2.7.10)

x p(x)

∃

2.7.6

∃x p(x) x p(x)

∃x ∈ R (x > 5)
∃x ∈ R ( = 0)x−−√

x = 6
x = 0

2.7.7

x x+2

2.7.2

2.7.8

x x > 5

∃x ∈ R (x > 5), or ∃x (x ∈ R ∧x > 5). (2.7.11)

∧ ⇒ x

2.7.3

x x+1
x > 2 x+1
k 2k+1

k 2k
x x2 x

2.7.4
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“The square of any real number is positive”

is a universal quantification

“For any real number , .”

Is it true or false?

 

Negation with Quantifiers
 

To negate that a proposition always happens, is to say there exists an instance where it does not happen.

To negate that a proposition exists, is to say the proposition always does not happen.

Symbolically:

and 

hands-on Exercise 

Negate the propositions in Hands-On Exercise 

Example 

The statement

“All real numbers  satisfy ”

can be written as, symbolically, . Its negation is . In words, it says “There exists a real
number  that satisfies .”

hands-on Exercise 
Negate the statement

“Every Discrete Mathematics student has taken Calculus I and Calculus II.”

Summary and Review
There are two ways to quantify a propositional function: universal quantification and existential quantification.
They are written in the form of “ ” and “ ” respectively.
To negate a quantified statement, change  to , and  to , and then negate the statement.

Exercises     
Exercise 
Consider these propositional functions:

:  is prime

:  is even

:

Express these formulas in words:

a. 
b. 

x > 0x2

≡ ∃x∀xP (x)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄

P (x)
¯ ¯¯̄ ¯̄ ¯̄ ¯̄

≡ ∀x∃xP (x)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄

P (x)
¯ ¯¯̄ ¯̄ ¯̄ ¯̄

2.7.5

2.7.3

2.7.9

x ≥ 0x2

∀x ∈ R ( ≥ 0)x2 ∃x ∈ R ( < 0)x2

x < 0x2

2.7.6

∀x p(x) ∃x p(x)
∀ ∃ ∃ ∀

2.7.

2.7.1

p(n) n

q(n) n

r(n) n > 2

∃n ∈ Z (p(n) ∧ q(n))
∀n ∈ Z [r(n) ⇒ p(n) ∨ q(n)]
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c. 
d. 

Answer

(a) There exists an integer  such that  is prime and  is even.

(b) For all integers , if , then  is prime or  is even.

(c) There exists an integer  such that  is prime, and either  is even or .

(d) For all integers , if  is prime and  is even, then .

 

Exercise 
Write each of the following statements in symbolic form:

a. For every even integer  there exists an integer  such that .
b. There exists a right triangle  that is an isosceles triangle.
c. Given any quadrilateral , if  is a parallelogram and  has two adjacent sides that are perpendicular, then  is a rectangle.

Exercise 
Determine whether these statements are true or false:

a. There exists an even prime integer.
b. There exist integers  and  such that  and .
c. Given any real numbers  and , .

Answer

(a) true (b) true (c) false

 

Exercise 

Determine whether these statements are true or false:

a. There is a rational number  such that .
b. For all , either  is even, or  is odd.
c. There exists a unique number  such that . 

 

Exercise 

Negate this universal conditional statement (think about how a conditional statement is negated).

For all cats, if a cat eats 3 meals a day, then that cat weighs at least 10 lbs.

Answer

There exists a cat that eats 3 meals a day and weighs less than 10 lbs.

Exercise 

Negate this universal conditional statement.

 .

 

∃n ∈ Z [p(n) ∧ (q(n) ∨ r(n))]

∀n ∈ Z [(p(n) ∧ q(n)) ⇒ ]r(n)
¯ ¯¯̄¯̄¯̄¯

n n n

n n > 2 n n

n n n n > 2

n n n n ≤ 2

2.7.2

n k n = 2k
T

Q Q Q Q

2.7.3

s t 1 < s < t < 187 st = 187
x y −2xy+ > 0x2 y2

2.7.4

x ≤ 0x2

x ∈ Z x x

x = 1x2

2.7.5

2.7.6

∀x ∈ R(x < 0 → x+1 < 0)
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Answer

. 
 

Exercise 

original: No student wants a final exam on Saturday.

a. Write the original statement symbolically.

b. Negate the original statement symbolically.

C. Negate the original statement informally (in English).

Answer

a. . 
b. . 
c. Some student does want a final exam on Saturday.

Exercise 
For this statement, (i) represent it in symbolic form, (ii) find the symbolic negation (in simplest form), and (iii) express the
negation in words.

There exist rational numbers  and  such that  and .

Exercise 
The easiest way to negate the proposition

“A square must be a parallelogram”

is to say

“It is not true that a square must be a parallelogram.”

Yet, it is not the same as saying

“A square must not be a parallelogram.”

Can you explain why? What are other ways to express its negation in words?

Answer

The statement “a square must be a parallelogram” means, symbolically,

but the statement “a square must not be a parallelogram” means

The second statement is not the negation of the first. The correct negation, in symbol, is

In words, it means “there exists a square that is not a parallelogram.”

Exercise 

Negate these statements:

a. All squared numbers are positive.
b. All basketball players are over 6 feet tall.
c. No quarterback is under 6 feet tall.

∃x ∈ R(x < 0 ∧x+1 ≥ 0)

2.7.7

∀ students x (x does not want a final exam on Saturday)
∃ a student x (x does want a final exam on Saturday)

2.7.8

x1 x2 <x1 x2 − > −x3
1 x1 x3

2 x2

2.7.9

∀PQRS (PQRS is a square ⇒ PQRS is a parallelogram), (2.7.12)

∀PQRS (PQRS is a square ⇒ PQRS is not a parallelogram). (2.7.13)

∃PQRS (PQRS is a square ∧PQRS is a parallelogram). (2.7.14)

2.7.10

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/23241?pdf


2.7.7 https://math.libretexts.org/@go/page/23241

This page titled 2.7: Quantiers is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/23241?pdf
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/2%3A_Logic/2.7%3A_Quantiers
https://creativecommons.org/licenses/by-nc-sa/
http://home.fredonia.edu/math/kwong_h
https://textbooks.opensuny.org/


2.8.1 https://math.libretexts.org/@go/page/24120

2.8: Multiple Quantiers

Multiple Quantifiers

Multiple quantifiers can be used.  With more than one quantifier, the order makes a difference.

 

 

Example 
When multiple quantifiers are present, the order in which they appear is important. Determine whether these two statements are
true or false.

Here,  denotes the set of all nonzero real numbers.

Answer
a. To prove that the statement is true, we need to show that no matter what integer  we start with, we can always find a

nonzero real number  such that . For , we can pick , which makes . For , let 
, then . This concludes the proof that the first statement is true.

b. Let . Can we find an integer  such that ? Definitely! For example, we can set . This counterexample
shows that the second statement is false. NOTE: the statement is false, but this is not a valid explanation.  Do you see
why? What do you need to show an existence statement is false?

 

hands-on Exercise 

True or false: ?

Example 
Many theorems in mathematics can be expressed as quantified statements. Consider

“If  is rational and  is irrational, then  is irrational.”

This is same as saying

“Whenever  is rational and  is irrational, then  is irrational.”

The keyword “whenever” suggests that we should use a universal quantifier.

It can also be written as

Although this form looks complicated and seems difficult to understand (primarily because it is quite symbolic, hence appears to
be abstract and incomprehensible to many students), it provides an easy form for negation. See the discussion below.

The fact that an implication can be expressed as a universally quantified statement sounds familiar. 

 

Negation with Multiple Quantifiers

We shall learn several basic proof techniques in Chapter 3. Some of them require negating a logical statement. Since many
mathematical results are stated as quantified statements, it is necessary for us to learn how to negate a quantification. The rule is
rather simple. Interchange  and , and negate the statement that is being quantified. In other words,

2.8.1

∀x ∈ Z ∃y ∈ (xy < 1)R
∗

∃y ∈ ∀x ∈ Z (xy < 1)R
∗

R∗

x

y xy < 1 x ≤ 0 y = 1 xy = x ≤ 0 < 1 x > 0

y = 1
x+1

xy = < 1x

x+1

y = 1 x xy ≥ 1 x = 2

2.8.1

∃y ∈ R ∀x ∈ Z (xy < 1)

2.8.2

x y x +y

x y x +y

∀x, y (x is rational ∧ y is irrational ⇒ x +y is irrational). (2.8.1)

∀x ∈ Q∀y ∉ Q (x +y is irrational). (2.8.2)

∀ ∃
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If we have , we only change it to  when we take negation. It should not be negated as . The reason is: we are
only negating the quantification, not the membership of . In symbols, we write

The negation of “ ” is obtained in a similar manner.

Example 

We find

and

Remember that we do not change the membership of  and .

Example 
The statement

“All real numbers  satisfy ”

can be written as, symbolically, . Its negation is . In words, it says “There exists a real
number  that satisfies .”

Summary and Review

Symbolically, here's how to negate statements with quantifiers:   
In general, “ ” is NOT the same as  “ ”, so order makes a difference.

Exercises     
Exercise 

Determine whether these statements are true or false:

a. There is an integer  such that both  is an integer and, for every integer ,  is not an integer.
b. For every integer , there exists an integer  such that .
c. There exists a real number  such that for every real number , .

Answer

(a) false (b) true (c) true

Exercise 

Negate the following statements:

a. For all real numbers , there exists an integer  such that  implies .
b. There exists a rational number  such that for all integers , either  or  is true.
c. For all integers , there exists an integer  such that if  is true, then there exists an integer  so that  is true.

Exercise 

Find the negation (in simplest form) of each symbolic statement.

a. 
b. 

≡ ∃x , and ≡ ∀x .∀x p(x)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄

p(x)
¯ ¯¯̄¯̄¯̄¯

∃x p(x)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄

p(x)
¯ ¯¯̄¯̄¯̄¯

(2.8.3)

∀x ∈ Z ∃x ∈ Z ∃x ∉ Z

x

≡ ∃x ∈ Z .∀x ∈ Z p(x)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

p(x)
¯ ¯¯̄¯̄¯̄¯

(2.8.4)

∃x ∈ Z p(x)

2.8.11

≡ ∃x ∈ Z ∀y ∈ (xy ≥ 1),∀x ∈ Z ∃y ∈ (xy < 1)R
∗¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄ ¯̄¯̄ ¯̄¯̄¯̄ ¯̄¯̄ ¯̄¯̄¯̄¯̄¯̄¯̄ ¯̄¯̄ ¯̄

R
∗ (2.8.5)

≡ ∀y ∈ ∃x ∈ Z (xy ≥ 1).∃y ∈ ∀x ∈ Z (xy < 1)R
∗¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄ ¯̄¯̄ ¯̄¯̄¯̄ ¯̄¯̄ ¯̄¯̄¯̄¯̄¯̄¯̄ ¯̄¯̄ ¯̄

R
∗ (2.8.6)

x y

2.8.12

x ≥ 0x2

∀x ∈ R ( ≥ 0)x2 ∃x ∈ R ( < 0)x2

x < 0x2

≡ ∃x , and ≡ ∀x .∀x p(x)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄

p(x)
¯ ¯¯̄¯̄¯̄¯

∃x p(x)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄

p(x)
¯ ¯¯̄¯̄¯̄¯

∀x ∃y p(x, y) ∃y ∀x p(x, y)

2.8.

2.8.1

m m/2 k m/(2k)

n m m > n2

x y xy = 0

2.8.2

x y p(x, y) q(x, y)

x y p(x, y) r(x, y)

x y p(x, y) z q(x, y, z)

2.8.3

∀x < 0 ∧ x ∈ R ∀y, z ∈ R (y < z ⇒ xy > xz)

∀x ∈ Z [p(x) ∨ q(x)]
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c. 

Answer

(a) 

(b) 

(c) 

 

 

Exercise 
For this statement, (i) represent it in symbolic form, (ii) find the symbolic negation (in simplest form), and (iii) express the
negation in words.

 

For all real numbers  and  there exists an integer  such that .

Exercise 

For each statement, (i) represent it in symbolic form, (ii) find the symbolic negation (in simplest form), and (iii) express the
negation in words.

a. For all real numbers  and , .
b. For every positive real number  there exists a real number  such that .
c. There exists a real number  such that, for every integer , .

Answer

(a)

There exist real numbers  and  such that .

(b)

There exists a positive real number  such that for all real numbers , .

(c)

For every real number , there exists an integer  such that .

1. Some students may not be familiar with matrices. A matrix is rectangular array of numbers. Matrices are important tools in
mathematics. The product of two matrices of appropriate sizes is defined in a rather unusual way. It is the peculiar way that two
matrices are multiplied that makes matrices so useful in mathematics. The square of a matrix is of course the product of the
matrix with itself. It is well-defined only when the matrix is a square matrix. As it turns out, the order of multiplication of two
matrices is important. In other words, given any two matrices  and , it is not always true that .↩

∀x, y ∈ R [p(x, y) ⇒ q(x, y)]

∃x < 0 ∧ x ∈ R ∃y, z ∈ R (y < z ∧ xy ≤ xz)

∃x ∈ Z [ ∧ ]p(x)
¯ ¯¯̄¯̄¯̄¯

q(x)
¯ ¯¯̄¯̄¯̄¯

∃x, y ∈ R [p(x, y) ∧ ]q(x, y)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄

2.8.4

x y z 2z = x +y

2.8.5

x y x +y = y +x

x y = xy2

y x 2 +1 > yx2 x2

∀x,y ∈ R (x + y = y + x)

∃x,y ∈ R (x + y ≠ y + x)

x y x + y ≠ y + x

∀x ∈ ∃y ∈ R ( = x)R+ y2

∃x ∈ ∀y ∈ R ( ≠ x)R+ y2

x y ≠ xy2

∃y ∈ R∀x ∈ Z (2 + 1 > y)x2 x2

∀y ∈ R∃x ∈ Z (2 + 1 ≤ y)x2 x2

y x 2 + 1 ≤ yx2 x2

A B AB = BA

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/24120?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/A_Spiral_Workbook_for_Discrete_Mathematics_(Kwong)/02%3A_Logic/2.06%3A_Logical_Quantiers#fnref1


2.8.4 https://math.libretexts.org/@go/page/24120

This page titled 2.8: Multiple Quantiers is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/24120?pdf
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/2%3A_Logic/2.8%3A_Multiple_Quantiers
https://creativecommons.org/licenses/by-nc-sa/
http://home.fredonia.edu/math/kwong_h
https://textbooks.opensuny.org/


1

CHAPTER OVERVIEW

3: Proof Techniques
3.1: An Introduction to Proof Techniques
3.2: Direct Proofs
3.3: Q-R Theorem and Mod
3.4: Indirect Proofs
3.5: The Euclidean Algorithm
3.6: Mathematical Induction - An Introduction
3.7: The Well-Ordering Principle
3.8: More on Mathematical Induction

This page titled 3: Proof Techniques is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

https://libretexts.org/
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques/3.1%3A_An_Introduction_to_Proof_Techniques
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques/3.2%3A_Direct_Proofs
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques/3.3%3A_Q-R_Theorem_and_Mod
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques/3.4%3A_Indirect_Proofs
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques/3.5%3A_The_Euclidean_Algorithm
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques/3.6%3A_Mathematical_Induction_-_An_Introduction
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques/3.7%3A_The_Well-Ordering_Principle
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques/3.8%3A_More_on_Mathematical_Induction
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/3%3A_Proof_Techniques
https://creativecommons.org/licenses/by-nc-sa/
http://home.fredonia.edu/math/kwong_h
https://textbooks.opensuny.org/


3.1.1 https://math.libretexts.org/@go/page/24423

3.1: An Introduction to Proof Techniques

Initial Suggestions

A proof is a logical argument that verifies the validity of a statement. A good proof must be correct, but it also needs to be clear
enough for others to understand. In the following sections, we want to show you how to write mathematical arguments. It takes
practice to learn how to write mathematical proofs; you have to keep trying! We would like to start with some suggestions.

1. Write at the level of your peers. A common question asked by many students is: how much detail should I include in a proof?
One simple guideline is to write at the level that your peers can understand. Although you can skip the detailed computation, be
sure to include the major steps in an argument.

2. Use symbols and notations appropriately. Do not use mathematical symbols as abbreviations. For example, do not write “  is
a number .” Use “  is a number greater than 4” instead. Do not use symbols excessively either. It is often clearer if we
express our idea in words. Finally, do not start a sentence with a symbol, as in “Suppose .  and  have the same signs.”
It would look better if we combine the two sentences, and write “Suppose , then  and  have the same signs.”

3. Display long and important equations separately. Make the key mathematical results stand out by displaying them separately
on their own. Be sure to center these expressions. Number them if you need to refer to them later. See Examples 3.3.1 and 3.1.2.

4. Write in complete sentences, with proper usage of grammar and punctuation. A proof is, after all, a piece of writing. It
should conform to the usual writing rules. Use complete sentences, and do not forget to check the grammar and punctuation.

5. Anticipate any questions your reader might have and answer them as part of your proof.

6. Start with a draft. Prepare a draft. When you feel it is correct, start revising it: check the accuracy, remove redundancy, and
simplify the sentence structure. Organize the argument into short paragraphs to enhance the readability of a proof. Go over the
proof and refine it further.

Definitions and Properties
Here is information, some of which was introduced in section 1.5, that will be important for proof writing.

Closure

We will assume the set of integers is closed under addition, subtraction and multiplication.

(Closure of a set under an operation was defined in section 1.5.)

Note: closure of other sets under any operations cannot be assumed. So, for example the statement "the set of rational numbers
is closed under multiplication" cannot be used as a reason, unless you prove this within your proof.

 

Definition: Rational numbers 

Here is the definition of rational numbers.

A rational number is a real number which can be written as a fraction,  where  are integers and .

In symbols:

 

Definition: Even & Odd

Here is the definition of even and odd numbers.

Given n is an integer, 

n is even 

x

> 4 x

xy > 0 x y

xy > 0 x y

a

b
a, b b ≠ 0

n ∈ Q⇔ ∃a, b ∈ Z(n = ∧ b ≠ 0)a

b

↔ ∃k ∈ Z(n = 2k)
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n is odd 

 

Terminology: The condition of being even or odd is the parity of an integer. 

Here's a property about the parity of integers which we will prove later in this chapter.

Parity Property

Every integer is either even or odd and not both.

 

 

Zero Product Property

You have used the Zero Product Property for solving quadratic equations by factoring.

Since these two binomials mulitply to zero, one must be zero.

 

In proofs, you may need the contrapositive of the Zero Product Property:

.

You may refer to this as the Zero Product Property as well.

 

Examples

Example 

Show that the product of two odd integers is odd.

Proof

Let  and  be any two odd integers. We want to prove that  is odd. We can say  and  for some
integers  and  by definition of odd. By substitution, 

 By algebra,

where  is an integer since the integers are closed under addition and multiplication. Therefore,  is odd by
definition of odd. Thus the product of two odd integers is odd. QED.

 

Question 1

Why didn't we use  for both  and  ??

 

Question 2

Why did we need to show  is an integer ??

↔ ∃m ∈ Z(n = 2m +1)

∀a, b ∈ R, ab = 0 → a = 0 ∨ b = 0

(x −6)(x +4) = 0 (3.1.1)

x −6 = 0 ∨ x +4 = 0 (3.1.2)

a ≠ 0 ∧ b ≠ 0 → ab ≠ 0

3.1.1

x y xy x = 2s +1 y = 2t +1

s t

xy = (2s +1)(2t +1). (3.1.3)

xy = 4st +2s +2t +1 = 2(2st +s + t) +1, (3.1.4)

2st +s + t xy

2s +1 x y

2st +s + t
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In this proof, we need to use two different quantities  and  to describe  and  because they need not be the same. If we write 
 and , we are in effect saying that . We have to stress that  and  are integers, because just saying 
 and  does not guarantee  and  are odd. For instance, the even number 4 can be written as ,

which is of the form . It is obvious that 4 is not odd. Even though we can write a number in the form , it does not
necessarily mean the number must be odd, unless we know with certainty that  is an integer. This example illustrates the
importance of paying attention to the details in our writing.

.

hands-on exercise 

Let  be an integer. Show that if  is odd, then  is odd.

 

Some proofs basically require direct computation.

Example 

Let  and  be two rational numbers such that . Show that the weighted average  is a rational number between 
and .

Proof

Since  and  are rational numbers, we can write  and  for some integers , , , and , where  by
definition of rational numbers. Then using algebra

   is a rational number since  and  are integers because the integers are closed under addition and
multiplication, and  by the Zero Product Property since  . Since , we know .
Using algebra, it follows that

 

   

  

 

   

. In a similar fashion, we also find . Thus,  is a rational number between  and .

s t x y

x = 2s +1 y = 2s +1 x = y s t

x = 2s +1 y = 2t +1 x y 2 ⋅ +13
2

2s +1 2s +1

s

3.1.1

n n n3

3.1.2

a b a < b a + b1
3

2
3

a

b

a b a = m

n
b =

p

q
m n p q n, q ≠ 0

a + b = ⋅ + ⋅ = .
1

3

2

3

1

3

m

n

2

3

p

q

mq +2np

3nq
(3.1.5)

mq+2np

3nq
mq +2np 3np

3nq ≠ 0 3 ≠ 0 ∧ n ≠ 0 ∧ q ≠ 0 a < b b > a

b −a > 0 (3.1.6)

(b −a) > 0,
2

3
(3.1.7)

b − a > 0,
2

3

2

3
(3.1.8)

b + a − a > 0,
2

3

1

3
(3.1.9)

( a + b)−a > 0
1

3

2

3
(3.1.10)

a + b > a
1

3

2

3
(3.1.11)

a + b < b
1
3

2
3

a + b
1
3

2
3

a b
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hands-on Exercise 

Show that  is closer to  than to .

Hint

Compute the distance between  and , and compare it to the distance between  and .

 

Example 
Let  and  be positive integers. Show that, if  is even, then an  chessboard can be fully covered by non-overlapping
dominoes.

Remark

This time, the names  and  have already been assigned to the two positive integers. Thus, we can refer to them in the proof
without an introduction.

Solution

Since  is even, one of the two integers  and  must be even (this actually needs a proof, but we will assume it to be
true for now). Without loss of generality (since the other case is similar), we may assume , the number of rows, is even.
Then  for some integer  by definition of even. Each column can be filled with  non-overlapping dominoes
placed vertically. As a result, the entire chessboard can be covered with  non-overlapping vertical dominoes.

Exercises 

Exercise 

Show that, between any two rational numbers  and , where , there exists another rational number.

Hint

Try the midpoint of the interval .

Proof

Since  and  are rational numbers, we can write  and  for some integers , , , and , where 

 by definition of rational numbers; also . Then choose  

First we show  is a rational number:   and  are integers because the integers are closed under addition and
multiplication, and  by the Zero Product Property since  . 
 
Next, we must show  
Since ,

In other words,

Since ,

In other words,

3.1.2

a + b
1
3

2
3

b a

a a + b
1
3

2
3

a + b
1
3

2
3

b

3.1.3

m n mn m ×n

m n

mn m n

m

m = 2t t m/2 = t

nt

3.1.1

a b a < b

[a, b]

a b a =
p

q b =
j

k
p q j k

q ≠ 0 and k ≠ 0 <
p

q

j

k
m = (a +b) = ( + ) = .1

2

1

2

p

q

j

k

kp+jq

2kq

m kp +jq 2kq

2kq ≠ 0 2 ≠ 0 ∧ k ≠ 0 ∧ q ≠ 0

a < m and m < b.

<
p

q

j

k

( + ) < ( + ) = = b.
1

2

p

q

j

k

1

2

j

k

j

k

j

k
(3.1.12)

m < b. (3.1.13)

<
p

q

j

k

a = ( + ) < ( + ) = m.
1

2

p

q

p

q

1

2

p

q

j

k
(3.1.14)

a < m. (3.1.15)
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Thus,  is a rational number between  and .

 

Question

Why did we NOT just say "  is a rational number since the rational numbers are closed under addition and
multiplication"??

Exercise 

Prove the rational numbers are closed under addition.

 

Exercise 
Show that, between any two rational numbers  and , where , there exists another rational number closer to  than to .

Hint

Use a weighted average of  and .

 

Answer

Answer is not here yet.

 

Exercise 

Prove: the sum of two odd integers is a even.

Exercise 

Show that there is a rational number between 1 and 5 whose distance from 5 is seven times as long as its distance from 1.

Exercise 
Prove the square of an even integer is even.

Exercise 
State the parity of each of these numbers & explain:

(a) -11    (b)  0.8    (c) 502

Solution

(a) -11 is odd because -11 = 2(-6)+1 and -6 is an integer 
(b) 0.8 has no parity since it is not an integer 
(c) 502 is even because 502 = 2(251) and 251 is an integer

Exercise 

Show that given any rational number , there exists an integer  such that  is an integer.

Hint

Since  is rational, we can write  for some integers  and , where . All you need to do is to describe  in
terms of  and .

(a +b)1
2

a b

(a +b)1
2

3.1.2

3.1.3

a b a < b b a

a b

3.1.4

3.1.5

3.1.6

3.1.7

3.1.8

x y yx2

x x = m

n
m n n ≠ 0 y

m n
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Exercise 

The natural numbers are closed under subtraction.  True or False? Prove your answer.

Answer

False, the natural numbers are not closed under subtraction.  Here is a counterexample.  Consider 5 and 8. 5 and 8 are natural
numbers.  However, 5 - 8 is not a natural number, hence the natural numbers are not closed under subtraction.

Exercise 
Show that given any rational number , and any positive integer , there exists an integer  such that  is an integer.

This page titled 3.1: An Introduction to Proof Techniques is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Harris Kwong (OpenSUNY) .

3.1.9

3.1.10

x k y yxk
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3.2: Direct Proofs
Preview Activity 1 (Definition of Divides, Divisor, Multiple, is Divisible by) 
In Section 3.1, we studied the concepts of even integers and odd integers. The definition of an even integer was a formalization of
our concept of an even integer as being one this is “divisible by 2,” or a “multiple of 2.” We could also say that if “2 divides an
integer,” then that integer is an even integer. We will now extend this idea to integers other than 2. Following is a formal definition
of what it means to say that a nonzero integer  divides an integer .

Definition of Divides
A nonzero integer  divides an integer  provided that there is an integer  such that . We also say that  is a
divisor of ,  is a factor of ,  is divisible by , and  is a multiple of . The integer 0 is not a divisor of any integer. If 
and  are integers and , we frequently use the notation  as a shorthand for “  divides .”

A Note about Notation: Be careful with the notation . This does not represent the rational number . The notation 

represents a relationship between the integers  and  and is simply a shorthand for “  divides .”   "Divides" as in  is a relation
(true or false), while "divided by" as in  or   is an operation (results in a number) .

 

The definition for “divides” can be written in symbolic form using appropriate quantifiers as follows: A nonzero integer  divides
an integer  provided that .

 

Restated, let  and  be two integers such that , then the following statements are equivalent:

 divides ,
 is a divisor of ,
 is a factor of ,
 is a multiple of , and
 is divisible by .

They all mean

Given the initial conditions, there exists an integer  such that 

In terms of division, we say that  divides  if and only if the remainder is zero when  is divided by . We adopt the notation

Do not use a forward slash  or a backward slash  in the notation. To say that  does not divide , we add a slash across the
vertical bar, as in

The definition of divisibility is very important. Many students fail to finish very simple proofs because they cannot recall the
definition. So here we go again:

 for some integer .

Both integers  and  can be positive or negative, and  could even be 0. The only restriction is . In addition,  must be an
integer. For instance, , but it is certainly absurd to say that 2 divides 3.

Example 
Since , it is clear that .

 

m n

m n q n = m ⋅ q m

n m n n m n m a

b a ≠ 0 a|b a b

a|b
a

b
a|b

a b a b a|b
a

b
a/b

m

n (∃q ∈ Z)(n = m ⋅ q)

a b a ≠ 0

a b

a b

a b

b a

b a

q b = aq.

a b b a

a ∣ b [spoken as "a divides b''] (3.2.1)

/ ∖ a b

a ∤ b [spoken as "a does not divide b''] (3.2.2)

a ∣ b ⇔ b = aq q

a b b a ≠ 0 q

3 = 2 ⋅ 3
2

3.2.1

14 = (−2) ⋅ (−7) −2 ∣ 14
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hands-on exercise 
1. Use the definition of divides to explain why 4 divides 32 and to explain why 8 divides -96.

2. Give several examples of two integers where the first integer does not divide the second integer.

3. According to the definition of “divides,” does the integer 10 divide the integer 0? That is, is 10 a divisor of 0? Explain.

4. Use the definition of “divides” to complete the following sentence in symbolic form: “The nonzero integer  does not
divide the integer  means that ....”

5. Use the definition of “divides” to complete the following sentence without using the symbols for quantifiers: “The nonzero
integer  does not divide the integer . ....”

6. Give three different examples of three integers where the first integer divides the second integer and the second integer
divides the third integer.

 
hands-on exercise 
Verify that

by finding the quotient  and the remainder  such that , and  if .

Definition of Prime & Composite

An integer  is a prime  if  if  then either  or   

An integer  is a composite  if  with .

Notes:

The integer 1 is neither prime nor composite.
A positive integer  is composite if it has a divisor  that satisfies .

With our definition of "divisor" we can use a simpler definition for prime, as follows. 

Definition
An integer  is a prime if its positive divisors are 1 and  itself. Any integer greater than 1 that is not a prime is called
composite.

 
Example 
The integers  are primes.

 

hands-on exercise 
What are the next five primes after 23?

 

Sometimes, we can use a constructive proof when a proposition claims that certain values or quantities exist.

Example 

Given any positive integer , show that there exist  consecutive composite positive integers.

Solution

For each positive integer , we claim that the  integers

3.2.1

m

n

m n

3.2.2

5 ∣ 35, 8 ∤ 35, 25 ∤ 35, 7 ∣ 14, 2 ∣ −14, and 14 ∣ 14, (3.2.3)

q r b = aq+r r = 0 a ∣ b

p > 1 ∀a, b ∈ Z, ab = p a = p∧ b = 1 a = 1 ∧ b = p

n > 1 ∃a, b ∈ Z (ab = n) 1 < a < n∧ 1 < b < n

n d 1 < d < n

p > 1 p

3.2.2

2, 3, 5, 7, 11, 13, 17, 19, 23, …

3.2.3

3.2.3

n n

n n
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are composite. Here is the reason. For each , where , the integer

is divisible by  and greater than , and hence is composite.

hands-on Exercise 

Construct five consecutive positive integers that are composite. Verify their compositeness by means of factorization.

 

Theorem  Consecutive Integers have opposite parity
This is a theorem you can refer to in later work.  The proof of this theorem illustrates a technique called "Proof by Cases".

Proof

Let  be any integer.   is the next consecutive integer, by the meaning of consecutive.

We will consider two cases.

Case 1:  is even.

Since  is even, there exists an integer k such that  by the definition of even.

 by substitution.  Thus   is odd by definition of odd. We have  is even and  is odd, so in this
case, these consecutive integers have opposite parity.

Case 2:  is odd.

Since  is odd, there exists an integer j such that  by the definition of odd.

 by substitution. By algebra,  . Since  is closed under addition,  is an
integer.  Thus   is even by definition of even. We have  is odd and  is even, so in this case, these consecutive
integers have opposite parity.

We know by the Parity Property that  is either even or odd, so we have covered all cases.

 Consecutive integers have opposite parity.

Proof by Cases
When writing a proof by cases be careful to

clearly define what each case is
prove each case thoroughly
include a justification that all cases have been covered (this might be at the start or the end of the set of cases)
see more examples of proof by cases in the next section

hands-on exercise 
Show that  is even for all .

Theorem  The Fundamental Theorem of Arithmetic or Prime Factorization Theorem
1. Each natural number greater than 1 is either a prime number or is a product of prime numbers.

2. let  with . Assume that 

(n+1)! +2, (n+1)! +3, … (n+1)! +n, (n+1)! +(n+1) (3.2.4)

i 2 ≤ i ≤ n+1

(n+1)! + i =

=

1 ⋅ 2 ⋅ 3 ⋯ (i−1)i(i+1) ⋯ (n+1) + i

i [ 1 ⋅ 2 ⋅ 3 ⋯ (i−1)(i+1) ⋯ (n+1) +1 ]

i i

3.2.4

3.2.1

n n+1

n

n n = 2k

n+1 = 2k+1 n+1 n n+1

n

n n = 2j+1

n+1 = 2j+1 +1 n+1 = 2j+2 = 2(j+1) Z j+1

n+1 n n+1

n

∴

3.2.5

+nn3 n ∈ N

3.2.2

n ∈ N n > 1

n = ⋅ ⋅ ⋅  and that n = ⋅ ⋅ ⋅ ,p1p2 pr q1q2 qs (3.2.5)
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where  and  are prime with  and . Then , and for each 
from 1 to , .

Proof

The proof uses mathematical induction.  This is a proof technique we will be covering soon.

Definition
Let  and  be integers, not both 0. A common divisor of  and  is any nonzero integer that divides both  and . The largest
natural number that divides both  and  is called the greatest common divisor of  and . The greatest common divisor of 
and  is denoted by gcd( , ).

Some Mathematical Terminology
In Section 1.2, we introduced the idea of a direct proof. Since then, we have used some common terminology in mathematics
without much explanation. Before we proceed further, we will discuss some frequently used mathematical terms.

A proof in mathematics is a convincing argument that some mathematical statement is true. A proof should contain enough
mathematical detail to be convincing to the person(s) to whom the proof is addressed. In essence, a proof is an argument that
communicates a mathematical truth to another person (who has the appropriate mathematical background). A proof must use
correct, logical reasoning and be based on previously established results. These previous results can be axioms, definitions, or
previously proven theorems. These terms are discussed below.

Surprising to some is the fact that in mathematics, there are always undefined terms. This is because if we tried to define
everything, we would end up going in circles. Simply put, we must start somewhere. For example, in Euclidean geometry, the
terms “point,” “line,” and “contains” are undefined terms. In this text, we are using our number systems such as the natural
numbers and integers as undefined terms. We often assume that these undefined objects satisfy certain properties. These assumed
relationships are accepted as true without proof and are called axioms (or postulates). An axiom is a mathematical statement that is
accepted without proof. Euclidean geometry starts with undefined terms and a set of postulates and axioms. For example, the
following statement is an axiom of Euclidean geometry:

Given any two distinct points, there is exactly one line that contains these two points.

The closure properties of the set of integers discussed in Section 3.1 are being used as axioms in this text.

A definition is simply an agreement as to the meaning of a particular term. For example, in this text, we have defined the terms
“even integer” and “odd integer.” Definitions are not made at random, but rather, a definition is usually made because a certain
property is observed to occur frequently. As a result, it becomes convenient to give this property its own special name. Definitions
that have been made can be used in developing mathematical proofs. In fact, most proofs require the use of some definitions.

In dealing with mathematical statements, we frequently use the terms “conjecture,” “theorem,” “proposition,” “lemma,” and
“corollary.” A conjecture is a statement that we believe is plausible. That is, we think it is true, but we have not yet developed a
proof that it is true. A theorem is a mathematical statement for which we have a proof. A term that is often considered to be
synonymous with “theorem” is proposition.

Often the proof of a theorem can be quite long. In this case, it is often easier to communicate the proof in smaller “pieces.” These
supporting pieces are often called lemmas. A lemma is a true mathematical statement that was proven mainly to help in the proof
of some theorem. Once a given theorem has been proven, it is often the case that other propositions follow immediately from the
fact that the theorem is true. These are called corollaries of the theorem. The term corollary is used to refer to a theorem that is
easily proven once some other theorem has been proven.

Example 
Suppose we have proved the "Even Product Theorem": The product of any two even integers is an even integer.

Do you see how the related statement could be called a Corollary to the Even Product Theorem: The square of any even integer
is even.

⋅ ⋅ ⋅p1p2 pr ⋅ ⋅ ⋅q1q2 qs ≤ ≤ ⋅ ⋅ ⋅ ≤p1 p2 pr ≤ ≤ ⋅ ⋅ ⋅ ≤q1 q2 qs r = s j

r = qjpj

a b a b a b

a b a b a

b a b

3.2.4
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Why is this a corollary to the Even Product Theorem and what is the proof of this corollary?

Solution

The square of any even integer is even is a corollary to the Even Product Theorem because it follows that theorem almost
immediately. 
The square of any even integer is even. 
Proof: 
Let  be any even integer.  Since  means  we know  is the product of two even integers, thus by the Even
Product Theorem,   is even.  Therefore, the square of any even integer is even.   

Summary and Review
To prove an implication , start by assuming that  is true. Use the information from this assumption, together with any
other known results, to show that  must also be true.
If necessary, you may break  into several cases , and prove each implication  (separately, one at a time) as
indicated above.
Be sure to write the mathematical expressions clearly. Use different variables if the quantities involved may not be the same.
To get started, write down the given information, the assumption, and what you want to prove.
In the next step, use the definition if necessary, and rewrite the information in mathematical notations. The point is, try to obtain
some mathematical equations or logical statements that we can manipulate.
If you are stuck, think about the how the proof will end &  write that down.  Sometimes it helps to work backwards.

Exercises

Exercise 
Prove or disprove:  is prime for all nonnegative integer .

Solution

Consider   is a nonnegative integer. 

 
 is not prime, since ( , thus the statement:  is prime for all nonnegative integer  is false. 

Exercise 
Prove if  is an integer, then  has the same parity as .

Hint

Use proof by cases.

Exercise 

Let  be an integer.

a. Show that if  is odd, then  is also odd.
b. Show that if  is odd, then  is also odd.
c. A corollary is a result that can be derived easily from another result. Derive (b) as a corollary of (a).
d. Show that if  and  are odd, then so is .
e. Show that if  is even, and  is odd, then  is even. 

 

Solution to (a)

x x2 (x)(x) x2

x2 W 5

p ⇒ q p

q

p , , …p1 p2 ⇒ qpi

3.2.1

+12n n

n = 3; n

+1 = +1 = 9.2n 23 (3.2.6)

9 3)(3) = 9 +12n n

3.2.2

n n2 n

3.2.3

n

n n2

n n4

m n mn

m n mn
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If  is odd, then  is also odd. 
Proof: Let  be any odd integer.  By definition of odd,  

 by substitution.  Then by algebra,  
Since the set of integers is closed under multiplication and addition, . 
So, by the definition of odd,  is odd. 
Therefore, if  is odd, then  is also odd.

Exercise 

Prove that, for any odd integer , the number  must be odd.

Exercise 
Let  be an integer.

a. Prove that if  is a multiple of 3, then  is also a multiple of 3.
b. Prove that if  is a multiple of 7, then  is also a multiple of 7.

Solution to (a)

If  is a multiple of 3, then  is also a multiple of 3. 
Proof: Let  be any multiple of 3.  By definition of multiple, there exists an integer  such that  

 by substitution.  Then by algebra,  
Since the set of integers is closed under multiplication, . 
So, by the definition of multiple,  is a multiple of 3. 
Therefore, if  is a multiple of 3, then  is also a multiple of 3.

Exercise 

Prove that if  and  then 

Exercise 
Prove that if  then 

Exercise 
Recall that we can use a counterexample to disprove an implication. Show that the following claims are false:

a. If  and  are integers such that , then .
b. If  is a positive integer, then  is prime.

Exercise 
Explain why the following arguments are invalid:

a. Let  be an integer. If  is odd, then  is odd. Therefore,  must be odd.
b. Let  be an integer. If  is even, then  is also even. As an integer,  could be odd. Hence,  cannot be even. Therefore, 

must be odd.

Solution

(a) There is no information about , so the statement "if  is odd, then  is odd" is irrelevant to the parity of  
(b)  could be odd, but we also have  could be even. So, we do not have enough information to determine the parity of 

Exercise 

n n2

n ∃k ∈ Z(n = 2k+1).

= (2k+1 ,n2 )2 = (2k+1 = 4 +4k+1 = 2(2 +2k) +1.n2 )2 k2 k2

(2 +2k) ∈ Zk2

n2

n n2

W 5

3.2.4

n 2 +5n+4n2

3.2.5

n

n n2

n n3

n n2

n k n = 3k.

= (3k ,n2 )2 = (3k = 9 = 3(3 ).n2 )2 k2 k2

(3 ) ∈ Zk2

n2

n n2

W 5

3.2.6

a ∣ b c ∣ (−a) (−c) ∣ b

3.2.7

ac ∣ bc a ∣ b

3.2.8

x y >x2 y2 x > y

n +n+41n2

3.2.9

n n2 n n

n n n2 n2 n n

n2 n2 n n.

n2 n2

n.

3.2.10
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Analyze the following reasoning:

a. Let  be a set of real numbers. If  is in , then  is in . But  is not in , hence  is not in .
b. Let  be a set of real numbers. If  is in , then  is in . Therefore, if  is in , then  is in .

Exercise 
Show that there exists an integer  such that ,  and  are all primes.

Solution

Consider .  The numbers are 

Exercise 

Prove: If  is odd, then  is divisible by 

 

This page titled 3.2: Direct Proofs is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

S x S x2 S x S x2 S

S x S x2 S x2 S x S

3.2.11

n n n+2 n+4

n = 3 3, 5, 7.

3.2.12

n −1n2 4.
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3.3: Q-R Theorem and Mod
When we divide a positive integer (the dividend) by another positive integer (the divisor), we obtain a quotient. We multiply the
quotient to the divisor, and subtract the product from the dividend to obtain the remainder. Such a division produces two results: a
quotient and a remainder.

This is how we normally divide 23 by 4:

In general, the division  takes the form

so that , or equivalently, . Of course, both  and  are integers. Yet, the following “divisions”

also satisfy the requirement , but that is not what we normally do. This means having  alone is not enough to
define what quotient and remainder are. We need a more rigid definition.

Theorem  Quotient-Remainder Theorem
Given any integers  and , where , there exist integers  and  such that

where . Furthermore,  and  are uniquely determined by  and .

The integers , , , and  are called the dividend, divisor, quotient, and remainder, respectively. Notice that  is a multiple of 
 if and only if .

 

Remark

This is the outline of the proof:

Describe how to find the integers  and  such that .
Show that our choice of  satisfies .
Establish the uniqueness of  and .

Regarding the last part of the proof: to show that a certain number  is uniquely determined, a typical approach is to assume that
 is another choice that satisfies the given condition, and show that we must have .

Proof

This proof is not here because this proof needs the principle of Well-ordering Principle which we will cover soon.

However, the outline above describes the general format of the proof.

Notes:

You can refer to the Quotient-Remainder Theorem in later work
We use Q-R Theorem or Q-R Thm as a nick name.

5

4 23
20– –––
3

(3.3.1)

b÷a

q

a b

aq
– –––

r

(3.3.2)

r = b−aq b = aq+r q r

4

4 23
16– –––
7

2

4 23
8–––

15

6

4 23
24– –––

−1

7

4 23
28– –––

−5

(3.3.3)

b = aq+r b = aq+r

3.3.1

a d d > 0 q r

a = dq+r, (3.3.4)

0 ≤ r < d q r a d

a d q r a

d r = 0

q r a = dq+r

r 0 ≤ r < d

q r

x

x′ x = x′
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You should not have any problem dividing a positive integer by another positive integer. This is the kind of long division that we
normally perform. It is more challenging to divide a negative integer by a positive integer. When  is negative, the quotient  will
be negative as well, but the remainder  must be nonnegative. In a way,  is the deciding factor: we choose  such that the
remainder  satisfies the condition .

In general, for any integer , dividing  by  produces a decimal number. If the result is not an integer, round it down to the next
smaller integer (see Example 3.3.1). It is the quotient  that we want, and the remainder  is obtained from the subtraction 

. For example,

Rounding it down produces the quotient , and the remainder is ; and we do have 
.

 

Example 
According to the Quotient-Remainder Theorem, compute the quotients  and the remainders  when  is divided by :

(a) ,  & (b) ,  & (c) , 

Solution

(a) 47 = 9(5)+2, so   ,  
(b)  -47 = -10(5)+3, so   ,  
(c)  -41 = -4(12)+7, so   , 

hands-on Exercise 
According to the Quotient-Remainder Theorem, compute the quotients  and the remainders  when  is divided by :

(a) ,  & (b) ,  & (c) , 

Be sure to verify that .

 

Definition MOD (and div)

Given integers  and , with ,

 

where      and 

 

 Furthermore,  

where      and 

  and  are binary operators where  gives the quotient, and  yields the remainder of the integer division 
. Notice  can be positive, negative, or even zero. But  is always a nonnegative integer less than .  In fact, 

 will take on one of the values from 0, 1, 2, ..., 

example 
Let  be an integer such that Determine the value of  .

b q

r r q

r 0 ≤ r < a

b b a

q r

r = b−aq

= −3.1428 … .
−22

7
(3.3.5)

q = −4 r = −22 −7(−4) = 6

−22 = 7 ⋅ (−4) +6

3.3.1

q r m d

m = 47 d = 5 m = −47 d = 5 m = −41 d = 12

q = 5 r = 2

q = −10 r = 3

q = −4 r = 7

3.3.1

q r b a

b = 128 a = 7 b = −128 a = 7 b = −389 a = 16

b = aq+r

a b a > 0

b mod a = r ↔ b = aq+r (3.3.6)

q ∈ Z, r ∈ Z 0 ≤ r < a.

b div a = q ↔ b = aq+r. (3.3.7)

q ∈ Z, r ∈ Z 0 ≤ r < a.

 div  mod b div a b mod a

b÷a b div a b mod a a

b mod a a−1.

3.3.2

n n mod 6 = 4. (2n+5) mod 6
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Solution

The given information implies that  for some integer . Then

Therefore, .

hands-on Exercise 
Let  be an integer such that   Compute the value of d .

example 
Suppose today is Wednesday. Which day of the week is it a year from now?

Solution

Denote Sunday, Monday, … , Saturday as Day 0, 1, …  6, respectively. Today is Day 3. A year (assuming 365 days in a year)
from today will be Day 368. Since

it will be Day 4 of the week. Therefore, a year from today will be Thursday.

hands-on Exercise 

Suppose today is Friday. Which day of the week is it 1000 days from today?

 

Representations of Integers using Modulo

From the Quotient-Remainder Theorem, we know that any integer divided by a positive integer will have a set number of
remainders, and thus a set number of representations.

For example, any integer divided by 7 will produce a remainder between 0 and 6, inclusive. So every integer,  can be
represented by one of the following:

 where 

 

These representations can be used to prove the statement: The square of any odd integer has the form  for some integer 

Start by choosing an arbitrary odd integer . State that by the Quotient-Remainder Theorem any integer is able to be represented in
one of these ways:

 for some integer . 

Using the fact that  is odd, you will be able to eliminate two of these representations, leaving just two possibilities.

The rest of the proof proceeds using proof by cases (the 2 remaining cases). (See exercises.)

 

Example 
Show that if an integer  is not divisible by 3, then  must be a multiple of 3.

Remark

The letter  has been used to identify the integer of interest to us, and it appears in the hypothesis of the implication that we
want to prove. Nonetheless, many authors would start their proofs with the familiar phrase “Let  be … .”

Answer

n = 6q+4 q

2n+5 = 2(6q+4) +5 = 12q+8 +5 = 12q+13 = 12q+12 +1 = 6(2q+2) +1. (3.3.8)

(2n+5) mod 6 = 1

3.3.2

n n mod 11 = 5. (6n−4) mod 11

3.3.3

368 = 7 ⋅ 52 +4, (3.3.9)

3.3.3

n

n = 7q n = 7q+1 n = 7q+2 n = 7q+3 n = 7q+4 n = 7q+5 n = 7q+6, q ∈ Z.

8m+1 m.

n

n = 4q n = 4q+1 n = 4q+2 n = 4q+3, q

n

3.3.5

n −1n2

n

n
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Let  be an integer that is not divisible by 3. When it is divided by 3, the remainder is 1 or 2. Hence,  or 
 for some integer .

Case 1: If  for some integer , then by algebra 

where  is an integer because the  is closed under multiplication and addition. Thus in this case,  is a
multiple of 3, by definition of multiple.

Case 2: If  for some integer , then by algebra 

where  is an integer because the  is closed under multiplication and addition. Thus in this case,  is a
multiple of 3, by definition of multiple..

In both cases, we have shown that  is a multiple 3. Therefore, if an integer  is not divisible by 3, then  must
be a multiple of 3.

hands-on exercise 

Show that  is divisible by 6 for all .

Hint

One of the two integers  and  must be even (you MAY refer to the theorem: Consecutive integers have opposite
parity.), so we can easily show that the product  is a multiple of 2. Hence, it remains to show that it is also
a multiple of 3. Consider three cases: , , or , where  is an integer. 

Absolute Value and Triangle Inequality Theorem 
Definition
For all real numbers ,

Theorem  Triangle Inequality Theorem

For all real numbers  and , the following inequality holds: .

Proof

proof is still to come

Summary and Review
Given any integer , and any positive integer , there exist uniquely determined integers  and  such that , where 

.
We call  the quotient, and  the remainder.
The reason we have unique choices for  and  is the criterion we place on . It has to satisfy the requirement .
In fact, the criterion  is the single most important deciding factor in our choice of  and .
We define two binary operations on integers. The  operation yields the quotient, and the  operation produces the
remainder, of the integer division . In other words, , and .

n n = 3q+1

n = 3q+2 q

n = 3q+1 q

−1 = 9 +6q = 3(3 +2q),n2 q2 q2 (3.3.10)

3 +2qq2
Z −1n2

n = 3q+2 q

−1 = 9 +12q+3 = 3(3 +4q+1),n2 q2 q2 (3.3.11)

3 +4q+1q2
Z −1n2

−1n2 n −1n2

W 5

3.3.6

n(n+1)(2n+1) n ∈ N

n n+1

n(n+1)(2n+1)

n = 3q n = 3q+1 n = 3q+2 q

x

|x| = {−x

x

if x < 0
if x ≥ 0

3.3.1

x y |x+y| ≤ |x| + |y|

b a q r b = aq+r

0 ≤ r < a

q r

q r r 0 ≤ r < a

0 ≤ r < a q r

 div  mod

b÷a b div a = q b mod a = r
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Exercises 

exercise 
Find 

(a) 

(b) 

(c) 

Solution

(a) 1 because 23(13)= 299 and 300 = 23(13) +1 
(b) 6 because -11(11)= -121 and -115 = -11(11) + 6 
(c)  impossible since -22 is not greater than 0.

exercise 
Find  , where

(a) 

(b)  

(c)  

(d)  

(e)  

exercise 
Let  and  be integers such that

Determine

(a) 

(b) 

exercise 
Prove that among any three consecutive integers, one of them is a multiple of 3.

Hint

Let the three consecutive integers be , , and . What are the possible values of ? What does this
translate into, according to the division algorithm? In each case, what would , , and  look like?

exercise 
Prove that  is always a multiple of 3 for any integer  by

a. A case-by-case analysis.
b. Factoring .

exercise 

Prove The square of any odd integer has the form  for some integer 

(See comments in the text, Representations of Integers using Modulo, about this proof.)

3.3.1

300 mod 13 =

−115 mod 11 =

145 mod −22 =

3.3.2

b mod a

79 mod 19 =

59 mod 18 =

−823 mod 16 =

172 mod −8 =

−134 mod 20 =

3.3.3

m n

m mod 5 = 1,n mod 5 = 3. (3.3.12)

(m+n) mod 5

(mn) mod 5

3.3.4

n n+1 n+2 n mod 3

n n+1 n+2

3.3.5

−nn3 n

−nn3

3.3.6

8m+1 m.
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exercise 
Let  and  be integers such that

Prove  

 

This page titled 3.3: Q-R Theorem and Mod is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

3.3.7

m n

a mod 5 = 4, b mod 5 = 2. (3.3.13)

(ab) mod 5 = 3. (3.3.14)
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3.4: Indirect Proofs
 

Instead of proving  directly, it is sometimes easier to prove it indirectly. There are two kinds of indirect proofs: proof by
contrapositive, and proof by contradiction.

Proof by Contrapositive
Proof by contrapositive is based on the fact that an implication is equivalent to its contrapositive. Therefore, instead of proving 

, we may prove its contrapositive . Since it is an implication, we could use a direct proof:

Assume  is true (hence, assume  is false).

Show that  is true (that is, show that  is false).

The proof may proceed as follow:

Prove: 

Proof: We will prove the contrapositive of the stated result.

That is, we will prove .

Assume  is false, . . .

.

.

.

. . . Therefore  is false.

Thus .

Therefore, by contraposition, 

Lemma 

Let  be an integer. Show that if  is even, then  is also even.

Proof:

Proof by contrapositive: We want to prove that if  is odd, then  is odd. Let  be an odd integer, then  for
some integer  by definition of odd. By algebra 

 Since  is closed under addition & multiplication,  is an integer.  Hence  is odd by definition of odd.

Thus if  is odd, then  is odd.

Therefore, by contraposition, for all integers  if  is even, then  is  even.

Note: Lemma  will be used in the proof that  is irrational, later in this section.

Example 

Show that if  is a positive integer such that the sum of its positive divisors is , then  is prime.

Solution

We shall prove the contrapositive of the given statement. We want to prove that if  is composite, then the sum of its
positive divisors is not . Let  be a composite number. Then its divisors include 1, , and at least one other positive
divisor  different from 1 and . So the sum of its positive divisors is at least . Since  is positive, we gather that

p ⇒ q

p ⇒ q ⇒q̄̄ p̄̄̄

q̄̄ q

p̄̄̄ p

p ⇒ q

⇒q̄̄ p̄̄̄

q

p

⇒q̄̄ p̄̄̄

p ⇒ q.

3.4.1

n n2 n

n n2 n n = 2t+1
t

= 4 +4t+1 = 2(2 +2t) +1.n2 t2 t2 (3.4.1)

Z 2 +2tt2 n2

n n2

n n2 n

3.4.1 2
–

√

3.4.1

n n+1 n

n

n+1 n n

x n 1 +n+x x

1 +n+x > 1 +n. (3.4.2)
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We deduce that the sum of the divisors cannot be . Therefore, if the sum of the divisors of  is precisely , then 
must be prime.

Proof by Contradiction
Another indirect proof is proof by contradiction. To prove that , we proceed as follows:

Suppose  is false; that is, assume that  is true and  is false.

Argue until we obtain a contradiction, which could be any result that we know is false.

How does this prove that ? Assuming that the logic used in every step in the argument is correct, yet we still end up with a
contradiction, then the only possible flaw must come from the supposition that  is false. Consequently,  must be true.

This is what a typical proof by contradiction may look like:

Proof: Suppose not.  That is, suppose  is true and  is false. Then

. . .

.

.

a contradiction!!

Thus our assumption that  is true and  is false cannot be true.

Therefore,  must be true.

There is a more general form for proving a statement , which needs not be an implication. To prove the proposition  by
contradiction, we follow these steps:

Suppose  is false.

Argue until we obtain a contradiction.

Proof: Suppose not.  That is, suppose  is false. Then . . .

.

.

a contradiction!!

Thus our assumption that  is false cannot be true.

 Therefore,  must be true.

Example 
Show that if  is a point not on a line , then there exists exactly one perpendicular line from  onto .

Solution

Suppose we can find more than one perpendicular line from  onto . Pick any two of them, and denote their intersections
with  as  and . Then we have a triangle , where the angles  and  are both . This implies that the
sum of the interior angles of the triangle  exceeds , which is impossible. Hence, there is only one perpendicular
line from  onto .

Example 
Show that if , then .

note: if no set of numbers is specified, the default is the set of real numbers.

Solution

n+1 n n+1 n

p ⇒ q

p ⇒ q p q

p ⇒ q

p ⇒ q p ⇒ q

p q

p q

p ⇒ q

r r

r

r

r

r

3.4.2

P L P L

P L

L Q R PQR PQR PRQ 90∘

PQR 180∘

P L

3.4.3

< 5x2 |x| < 5
–

√
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Assume . We want to show that . Suppose, on the contrary, we have .

By definition,   or  .

So either , or . 

The second case,  is the same as  (by multiplying both sides by negative 1).

If , then , by algebra; note: since x is a positive number the inequality sign does not change.

If , we again have , by algebra; note: since x is a negative number the inequality sign reverses.

In either case, we have both  and  which is a contradiction.

Hence .

 if , then .

hands-on exercise 
Prove that if , then .

Example 
Prove

is a tautology.

Solution

Suppose  is false for some statements  and . Then we find

 is true, and
 is false.

For the conjunction  to be true, we need

 to be true, and
 to be true.

Having  true and  true, we must have  true.  That gives us  is true and  is false, a contradiction! Thus it cannot
be that  is false.  Therefore,  is always true, hence it is a tautology.

Example 
Prove, by contradiction, that if  is rational and  is irrational, then  is irrational.

Solution

Let  be a rational number and  an irrational number. We want to show that  is irrational. Suppose, on the contrary,
that  is rational. Then

for some integers  and , where  by definition of rational. Since  is rational, we also have

for some integers  and , where  by defintion of rational. It follows by substitution that

Hence by algebra,

< 5x2 |x| < 5
–

√ |x| ≥ 5
–

√

|x| = x |x| = −x

x ≥ 5
–

√ −x ≥ 5
–

√

−x ≥ 5
–

√ x ≤ − 5
–

√

x ≥ 5
–

√ ≥ 5x2

x ≤ − 5
–

√ ≥ 5x2

≥ 5x2 < 5x2

|x| < 5
–

√

∴ < 5x2 |x| < 5
–

√

3.4.1

≥ 49x2 |x| ≥ 7

3.4.4

[(p ⇒ q) ∧ p] ⇒ q (3.4.3)

[(p ⇒ q) ∧ p] ⇒ q p q

(p ⇒ q) ∧ p

q

(p ⇒ q) ∧ p

p ⇒ q

p

p p ⇒ q q q q

[(p ⇒ q) ∧ p] ⇒ q [(p ⇒ q) ∧ p] ⇒ q

3.4.5

x y x+y

x y x+y

x+y

x+y =
m

n
(3.4.4)

m n n ≠ 0 x

x =
p

q
(3.4.5)

p q q ≠ 0

= x+y = +y.
m

n

p

q
(3.4.6)
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where  and  are both integers because  is closed under addition and multiplication. Also  by the Zero
Product Property. This makes  rational by definition of rational.  Now we have   is rational and  is irrational (by
assumption). This is a contradiction! Thus,  cannot be rational, it must be irrational.

 if  is rational and  is irrational, then  is irrational.

hands-on exercise 
Prove that

for any positive real numbers  and .

Hint

The words “for any” suggest this is a universal quantification. Be sure you negate the problem statement properly.

Lemma 

We will use this lemma (along with Lemma 3.4.1) for the proof that  is irrational.

Lemma 3.4.2 Given a rational number, x, x can be written as a fraction  where  ,  and  is in lowest terms.

Proof:

Given a rational number, x, x can be written as a fraction  where  ,  by definition of rational number.

If  is not in lowest terms, then  and  have a common factor.  Divide out that common factor to get an equivalent
fraction, 

If  is not in lowest terms, then  and  have a common factor.  Divide out that common factor to get an equivalent

fraction, 

If  is not in lowest terms, then  and  have a common factor.  Divide out that common factor to get an equivalent

fraction, 

Continue this process until the numerator and denominator do not have any common factors.  Rename the numerator as 
and the denominator as 

Now  and  is in lowest terms. 
 a rational number can be written as a fraction in lowest terms.

 

 

The  is irrational.
Prove that  is irrational.

Proof:

Suppose, on the contrary,  is rational. Then we can write

for some positive integers  and  such that  and  do not share any common divisor except 1 (hence  is in lowest
terms) by Lemma 3.4.2. Squaring both sides and cross-multiplying yields

y = − = ,
m

n

p

q

mq−np

nq
(3.4.7)

mq−np nq Z nq ≠ 0
y y y

x+y

∴ x y x+y

3.4.2

≠ +x+y
− −−−−

√ x−−√ y√ (3.4.8)

x y

3.4.2

2
–

√

m

n
m,n ∈ Z n ≠ 0 m

n

a

b
a, b ∈ Z b ≠ 0

a

b
a b

.c
d

c

d
c d

.
f

g

f

g
f g

.
j

k

m

n.

x = m

n

m

n

∴

2
−−

√

2
–

√

2
–

√

=2
–

√
m

n
(3.4.9)

m n m n m

n
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 Since  are closed under multiplication,   is an integer and thus  is even by the definition of even. Consequently, by
Lemma 3.4.1,  is also even. Then we can write  for some integer  by the definition of even. By substitution and
algebra, the equation above becomes

Hence,

 Since  are closed under multiplication,   is an integer and thus  is even by the definition of even. Consequently, by
Lemma 3.4.1,  is also even. Even numbers are divisible by 2, by the definition of divides. We have shown that both  and 

 are divisible by 2. This contradicts the assumption that  and  do not share any common divisor. Thus is is not possible
for  to be rational.

Therefore,  must be irrational.

hands-on exercise 
Prove that  is irrational.

Very often, a proof by contradiction can be rephrased into a proof by contrapositive or even a direct proof, both of which are easier
to follow. If this is the case, rewrite the proof.

Example 
Show that  has no real solution. In symbols, show that .

Solution

Consider the following proof by contradiction:

Suppose there exists a real number  such that . 
Using calculus, it can be shown that the function  
has an absolute minimum at . **Need to show those calculus steps.**

Thus,  for 
any . This contradicts the assumption that there exists an  
such that . Thus,  has no real solution.

A close inspection reveals that we do not really need a proof by contradiction. The crux of the proof is the fact that 
 for all . This already shows that  could never be zero. It is easier to use a direct proof, as

follows.

Using calculus, we see .  Setting  we get . Since , thus ,we
find that the function  has an
absolute minimum at . Therefore, for any , we always have 

. Hence, there does not exist any  such that
.

Do you agree that the second proof (the direct proof) is more elegant?

Proving a Biconditional Statement
Recall that a biconditional statement  consists of two implications  and . Hence, to prove , we need to
establish these two “directions” separately.

Example 

2 = .n2 m2 (3.4.10)

Z n2 m2

m m = 2s s

2 = = (2s = 4 .n2 m2 )2 s2 (3.4.11)

= 2 .n2 s2 (3.4.12)

Z s2 n2

n m

n m n

2
–

√

2
–

√

3.4.3

3
–

√

3.4.6

+4x+6 = 0x2 ∃x̸ ∈ R, ( +4x+6 = 0)x2

x +4x+6 = 0x2

f(x) = +4x+6x2

x = −2

f(x) ≥ f(−2) = 2
x x

+4x+6 = 0x2 +4x+6 = 0x2

+4x+6 ≥ 2x2 x +4x+6x2

(x) = 2x+4f ′ (x) = 0f ′ x = −2 f " (x) = 2 f " (−2) = 2
f(x) = +4x+6x2

x = −2 x

f(x) ≥ f(−2) = 2 x

+4x+6 = 0x2

p ⇔ q p ⇒ q q ⇒ p p ⇔ q

3.4.7
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Let  be an integer. Prove that  is even if and only if  is even.

Solution

( ) We first prove that if  is even, then  must be even.

We shall prove its contrapositive: if  is odd, then  is odd. If  is odd, then we can write  for some integer  by
definition of odd. Then by algebra  

where  is an integer since  is closed under addition and multiplication. Thus,  is odd. So, if  is odd, then  is
odd.  By contraposition, if  is even, then  is even.

( ) Next, we prove that if  is even, then  is even.

If  is even, we can write  for some integer  by definition of even. Then

where  is an integer since  is closed under multiplication. Hence,  is even. if  is even, then  is even.

 is even if and only if  is even. 

hands-on exercise 

Let  be an integer. Prove that  is odd if and only if  is odd.

Summary and Review
We can use indirect proofs to prove an implication.
There are two kinds of indirect proofs: proof by contrapositive and proof by contradiction.
In a proof by contrapositive, we actually use a direct proof to prove the contrapositive of the original implication.
In a proof by contradiction, we start with the supposition that the implication is false, and use this assumption to derive a
contradiction. This would prove that the implication must be true.
A proof by contradiction can also be used to prove a statement that is not of the form of an implication. We start with the
supposition that the statement is false, and use this assumption to derive a contradiction. This would prove that the statement
must be true.
Sometimes a proof by contradiction can be rewritten as a direct proof. If so, the direct proof is the more direct way to write the
proof.

Exercises

exercise 
Let  be an integer. Prove that if  is even, then  must be even. Use

(a) A proof by contrapositive (this one is done - see proof of Lemma 3.4.1)

(b) A proof by contradiction.

Remark

The two proofs are very similar, but the wording is slightly different, so be sure you present your proof clearly.

exercise 

Let  be an integer. Prove that if  is a multiple of 3, then  must also be a multiple of 3. Use

(a) A proof by contrapositive.

(b) A proof by contradiction.

exercise 

n n2 n

⇒ n2 n

n n2 n n = 2t+1 t

= (2t+1 = 4 +4t+1 = 2(2 +2t) +1,n2 )2 t2 t2 (3.4.13)

2 +2tt2 Z n2 n n2

n2 n

⇐ n n2

n n = 2t t

= (2t = 4 = 2 ⋅ 2 ,n2 )2 t2 t2 (3.4.14)

2t2 Z n2 n n2

∴ n2 n

3.4.4

n n n2

3.4.1

n n2 n

3.4.2

n n2 n

3.4.3
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Let  be an integer. Prove that if  is even, then  for some integer .

exercise 

Let  and  be integers. Show that  implies that  or .

exercise 

Let  be a real number. Prove by contrapositive: if  is irrational, then  is irrational. Apply this result to show that  is
irrational, using the assumption that  is irrational.

exercise 
Let  and  be real numbers such that . Prove that if  is rational, and  is irrational, then  is irrational.

exercise 
Prove that  is irrational.

exercise 
Prove that  is irrational.

exercise 

Let  and  be real numbers. Prove that if , then .

exercise 

Use contradiction to prove that, for all integers ,

exercise 
Let  and  be integers. Prove that  is even if and only if  is even or  is even.

exercise 

Let  and  be real numbers. Prove that  if and only if  and .

exercise 

Prove that, if  is a real number such that , then .

exercise 

Let  and  be positive integers such that 3 divides . Prove that 3 divides , or 3 divides .

exercise 
Prove that the logical formula

is a tautology.

(See example 3.4.4.)

exercise 

Prove that the logical formula

n n = 4sn2 s

3.4.4

m n mn = 1 m = 1 m = −1

3.4.5

x x x−−√ 2
–

√4

2
–

√

3.4.6

x y x ≠ 0 x y xy

3.4.7

5
–

√

3.4.8

2
–√3

3.4.9

a b a ≠ b + ≠ 2aba2 b2

3.4.10

k ≥ 1

2 + ≥ 2 .k+1
− −−−

√
1

k+1
− −−−

√
k+2
− −−−

√ (3.4.15)

3.4.11

m n mn m n

3.4.12

x y + = 0x2 y2 x = 0 y = 0

3.4.13

x 0 < x < 1 x(1 −x) ≤ 1
4

3.4.14

m n mn m n

3.4.15

(p ⇒ q) ∨ (p ⇒ )q̄̄ (3.4.16)

3.4.16
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is a tautology.

(See example 3.4.4.)

This page titled 3.4: Indirect Proofs is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

[(p ⇒ q) ∧ (p ⇒ )] ⇒q̄̄ p̄̄̄ (3.4.17)
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3.5: The Euclidean Algorithm
Definitions: common divisor
Let  and  be integers, not both 0. A common divisor of  and  is any nonzero integer that divides both  and . The largest
natural number that divides both  and  is called the greatest common divisor of  and . The greatest common divisor of 
and  is denoted by gcd( , )

Preview Activity : The GCD and the Division Algorithm

When we speak of the quotient and the remainder when we “divide an integer  by the positive integer ,” we will always mean
the quotient  and the remainder  guaranteed by the Quotient Remainder Theorem.

1. Each row in the following table contains values for the integers  and . In this table, the value of  is the remainder (from
the Division Algorithm) when  is divided by . Complete each row in this table by determining gcd( , ), , and gcd( ).

gcd( , ) Remainder gcd( , )

44 12    

75 21    

50 33    

2. Formulate a conjecture based on the results of the table in Part (1).

 

We have already studied a good deal of number theory in this text in our discussion of proof methods. In
particular, we have studied even and odd integers, divisibility of integers, and the Quotient-Remainder
Theorem. 
Before we develop an efficient method for determining the greatest common divisor of two integers, we need to establish some
properties of greatest common divisors.

 

Lemma 3.5.1
Let  with . Then  gcd(0, ) = .

 

Lemma 3.5.2
Let  and  be integers, not both equal to zero. If  and  are integers such that , then gcd( , ) = gcd( , ).

Proof

Let  and  be integers, not both equal to zero. Assume that  and  are integers such that . For ease of
notation, we will let

 gcd( , ) and  gcd( , ).

Now,  divides  and  divides . Consequently, there exist integers  and  such that  and . Hence,

But this means that  divides . Since m divides  and  divides ,  is less than or equal to gcd( , ). Thus, .

Using a similar argument, we see that  divides  and  divides . Since , we can prove that  divides .
Hence,  divides  and  divides . Thus,  gcd( , ) or . We now have  and . Hence,  and
gcd( , ) = gcd( , ).

a b a b a b

a b a b a

b a b

3.5.1

a b

q r

a b r

a b a b r b, r

a b a b r b r

a, b ∈ Z b > 0 b b

c d q r c = d ⋅ q+r c d d r

c d q r c = d ⋅ q+r

m = c d n = d r

m c m d x y c = mx d = my

r

r

r

=

=

=

c−d ⋅ q

mx−(my)q

m(x−yq).

(3.5.1)

m r d m r m d r m ≤ n

n d n r c = d ⋅ q+r n c

n c n d n ≤ c d n ≤ m m ≤ n n ≤ m m = n

c d d r
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Progress Check 3.5.1: Illustrations of Lemma 3.5.2
We completed several examples illustrating Lemma 8.1 in Preview Activity . For another example, let  and .
The greatest common divisor of 56 and 12 is 4.

1. According to the Division Algorithm, what is the remainder  when 56 is divided by 12?

2. What is the greatest common divisor of 12 and the remainder ? 
 
The key to finding the greatest common divisor (in more complicated cases) is to use the Division Algorithm again, this time
with 12 and . We now find integers  and  such that 

3. What is the greatest common divisor of  and ?

Answer

(1) 8 
(2) 4; 12 = 8(1) +4 
(3) 4

The Euclidean Algorithm
The example in Progress Check 8.2 illustrates the main idea of the Euclidean Algorithm for finding gcd( , ), which is explained
in the proof of the following theorem.

Theorem 3.5.1: Euclidean Algorithm
Let  and  be integers with . Then gcd( , ) is the only natural number  such that

(a)  divides  and  divides , and 
(b) if  is an integer that divides both  and , then  divides .

Note: if  then the gcd( , )= , by Lemma 3.5.1.

Proof

Let  and  be integers with , and let  gcd( , ). By the Quotient Remainder Theorem, there exist integers 
and  such that

If , then equation (8.1.3) implies that  divides . Hence,  gcd( , ) and this number satisfies Conditions (a)
and (b).

If , then by Lemma 8.1, gcd( , ) = gcd( , ). We use the Division Algorithm again to obtain integers  and  such
that

If , then equation (8.1.4) implies that  divides . This means that  gcd( , ). But we have already seen that
gcd( , ) = gcd( , ). Hence,  gcd( , ). In addition, if  is an integer that divides both  and , then, using equation
(8.1.3), we see that  and, hence  divides . This shows that  gcd( , ) satisfies Conditions (a) and (b).

If , then by Lemma 8.1, gcd( , ) = gcd( , ). But we have already seen that gcd( , ) = gcd( , ). Hence, gcd( , 
) = gcd( , ). We now continue to apply the Division Algorithm to produce a sequence of pairs of integers (all of which

have the same greatest common divisor). This is summarized in the following table:

Original Pair Equation from Division Inequality from Division
Algorithm

New Pair

( ) ( )

3.5.1 c = 56 d = 12

r

r

r q2 r2

12 = r ⋅ + .q2 r2 (3.5.2)

r r2

a b

a b a > b ≥ 0 a b d

d a d b

k a b k d

b = 0 a b a

a b a > b ≥ 0 d = a b q1

r1

a = b ⋅ + , and 0 ≤ < b.q1 r1 r1 (3.5.3)

= 0r1 b a b = d = a b

> 0r1 a b b r1 q2 r2

b = ⋅ + , and 0 ≤ < .r1 q2 r2 r2 r1 (3.5.4)

= 0r2 r1 b =r1 b r1

a b b r1 =r1 a b k a b

= a−b ⋅r1 q1 k r1 =r1 a b

> 0r2 b r1 r1 r2 a b b r1 a

b r1 r2

a,b a = b ⋅ +q1 r1 0 ≤ < br1 b,r1
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Original Pair Equation from Division Inequality from Division
Algorithm

New Pair

( ) ( )

( ) ( )

( ) ( )

( ) ( )

... ... ... ...

From the inequalities in the third column of this table, we have a strictly decreasing sequence of nonnegative integers (
). Consequently, a term in this sequence must eventually be equal to zero. Let  be the smallest

natural number such that . This means that the last two rows in the preceding table will be

Original Pair Equation from Division
Algorithm

Inequality from Division
Algorithm

New Pair

( ) ( )

( )   

Remember that this table was constructed by repeated use of Lemma 8.1 and that the greatest common divisor of each pair
of integers produced equals gcd( , ). Also, the last row in the table indicates that  divides . This means that gcd(

)  and hence  gcd( , ).

This proves that  gcd( , ) satisfies Condition (a) of this theorem. Now assume that  is an integer such that  divides 
and  divides . We proceed through the table row by row. First, since , we see that

 must divide .

The second row tells us that . Since  divides  and  divides , we conclude that

 divides .

Continuing with each row, we see that  divides each of the remainders . This means that  gcd( , )
satisfies Condition (b) of the theorem.

 

Example : (Using the Euclidean Algorithm)

Let  and . We will use the Euclidean Algorithm to determine gcd(234, 42).

Step Original Pair Equation from Division
Algorithm

New Pair

1 (234, 42) (42, 24)

2 (42, 24) (24, 18)

3 (24, 18) (18, 6)

4 (18, 6)  

So gcd(234, 42) = 6 and hence gcd(234, -42) = 6.

Exercises

Exercise :
1. Find each of the following greatest common divisors by using the Euclidean Algorithm. 
 

b,r1 b = ⋅ +r1 q2 r2 0 ≤ <r2 r1 ,r1 r2

,r1 r2 = ⋅ +r1 r2 q1 r3 0 ≤ <r3 r2 ,r2 r3

,r2 r3 = ⋅ +r2 r3 q1 r4 0 ≤ <r4 r3 ,r3 r4

,r3 r4 = ⋅ +r3 r4 q1 r5 0 ≤ <r5 r4 ,r4 r5

b > > > > ⋅ ⋅⋅r1 r2 r3 r4 p

= 0rp+1

,rp−2 rp−1 = ⋅ +rp−2 rp−1 qp rp 0 ≤ <rp rp−1 ,rp−1 rp

,rp−1 rp = ⋅ + 0rp−1 rp qp+1

a b rp rp−1

,rp−1 rp = rp =rp a b

=rp a b k k a

k b = a−b ⋅ qr1

k r1

= b− ⋅r2 r1 q2 k b k r1

k r2

k , , , . . . ,r1 r2 r3 rp =rp a b

3.5.1

a = 234 b = −42

234 = 42 ⋅ 5 + 24

42 = 24 ⋅ 1 + 18

24 = 18 ⋅ 1 + 6

18 = 6 ⋅ 3

3.5.1
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(a) gcd(21, 2511)              (b) gcd(110, 2511)                 (c) gcd(509,1177) 
 

2. Find each of the following greatest common divisors by using the Euclidean Algorithm. 
(a) gcd(10933, 832)          (b) gcd(1265,18400) 
 

3. Let  find 
(a)   gcd(a,1)     (b) gcd(a,a)     (c)   gcd(a,0) if       (d) gcd(a,35) if 

Answer:

(a) 1 (b) a (c) a (d) 7

 

4. Disprove mod is distributive over multiplication for the set , i.e.  using  .

This page titled 3.5: The Euclidean Algorithm is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

a, b ∈ Z
+

a > 0 a = 35b+14

Z
+ a, b, c ∈ Z

+
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3.6: Mathematical Induction - An Introduction
Mathematical induction can be used to prove that an identity is valid for all integers . Here is a typical example of such an
identity:

More generally, we can use mathematical induction to prove that a propositional function  is true for all integers .

Principal of Mathematical Induction (PMI)
Given a propositional function  defined for integers , and a fixed integer 

Then, if these two conditions are true

1.  is true.
2. if  is true for some integer , then  is also true.

then the   is true for all integers .

Outline for Mathematical Induction
To show that a propositional function  is true for all integers , follow these steps:

Base Step: Verify that  is true.
Inductive Step: Show that if  is true for some integer , then  is also true.

Assume  is true for an arbitrary integer,  with  .  This is the inductive hypothesis.
With this assumption (the inductive hypothesis), show  is true.

Conclude, by the Principle of Mathematical Induction (PMI) that  is true for all integers .

The base step is also called the basis step or the anchor step or the initial step. 

The base step and the inductive step, together, prove that

Therefore,  is true for all integers . Compare induction to falling dominoes. When the first domino falls, it knocks down
the next domino. The second domino in turn knocks down the third domino. Eventually, all the dominoes will be knocked down.
But it will not happen unless these conditions are met:

The first domino must fall to start the motion. If it does not fall, no chain reaction will occur. This is the base step.
The distance between adjacent dominoes must be set up correctly. Otherwise, a certain domino may fall down without knocking
over the next. Then the chain reaction will stop, and will never be completed. Maintaining the right inter-domino distance
ensures that  for each integer .

To prove the implication

in the inductive step, we need to carry out two steps: assuming that  is true, then using it to prove  is also true. So we
can refine an induction proof into a 3-step procedure:

Verify that  is true.
Assume that  is true for some integer .
Show that  is also true.

The second step, the assumption that  is true, is referred to as the inductive hypothesis. This is how a mathematical induction
proof may look:

The idea behind mathematical induction is rather simple. However, it must be delivered with precision.

n ≥ 1

1 +2 +3 +⋯ +n = .
n(n +1)

2
(3.6.1)

P (n) n ≥ a

P (n) n a.

P (a)

P (k) k ≥ a P (k +1)

P (n) n ≥ a

P (n) n ≥ a

P (a)

P (k) k ≥ a P (k +1)

P (n) k k ≥ a

P (k +1)

P (n) n ≥ a

P (a) ⇒ P (a +1) ⇒ P (a +2) ⇒ ⋯ . (3.6.2)

P (n) n ≥ a

P (k) ⇒ P (k +1) k ≥ a

P (k) ⇒ P (k +1) (3.6.3)

P (k) P (k +1)

P (a)

P (k) k ≥ a

P (k +1)

P (k)
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Be sure to say “Assume  holds for some integer .” Do not say “Assume it holds for all integers .” If we
already know the result holds for all , then there is no need to prove anything at all.
Be sure to specify the requirement . This ensures that the chain reaction of the falling dominoes starts with the first one.
Do not say “let ” or “let .” The point is, you are not assigning the value of  and  to . Rather, you are
assuming that the statement is true when  equals , and using it to show that the statement also holds when  equals .

Some proofs by induction 

Example 

Use mathematical induction to show proposition :  

for all integers .

Proof

Base Step:  consider n = 1

On the Left-Hand Side (LHS) we get 1.  On the Right-Hand Side ( RHS) we get   Thus  is true for 

Inductive step: Assume  is true for   In other words,  is true so our inductive hypothesis is 

   

Consider the left-hand side of .  

we can regroup this as

so that  can be replaced by , by the inductive hypothesis.

Using the inductive hypothesis, we find

Therefore, the identity also holds when .

Thus, by the Principle of Mathematical Induction (PMI), 

for all integers .

P (n) k ≥ a k ≥ a

k ≥ a

k ≥ a

n = k n = k +1 k k +1 n

n k n k +1

1 + 2 + 3 + ⋯ + n

3.6.1

P (n)

1 +2 +3 +⋯ +n =
n(n +1)

2
(3.6.4)

n ≥ 1

= = 1.
1(1+1)

2
2
2

P (n)

n = 1.

P (n) n = k, k ≥ 1. P (k)

1 +2 +3 +⋯ +k = .
k(k +1)

2
(3.6.5)

P (k +1)

1 +2 +3 +⋯ +(k +1) = 1 +2 +⋯ +k +(k +1), (3.6.6)

1 +2 +3 +⋯ +(k +1) = [1 +2 +⋯ +k] +(k +1), (3.6.7)

1 +2 +⋯ +k
k(k+1)

2

1 +2 +3 +⋯ +(k +1) =

=

=

=

=

1 +2 +3 +⋯ +k +(k +1)

+(k +1)
k(k +1)

2

(k +1)( +1)
k

2

(k +1) ⋅
k +2

2

.
(k +1)(k +2)

2

n = k +1

1 +2 +3 +⋯ +n =
n(n +1)

2
(3.6.8)

n ≥ 1
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We can use the summation notation (also called the sigma notation) to abbreviate a sum. For example, the sum in the last example
can be written as

The letter  is the index of summation. By putting  under  and  above, we declare that the sum starts with , and
ranges through , , and so on, until . The quantity that follows  describes the pattern of the terms that we are
adding in the summation. Accordingly,

In general, the sum of the first  terms in a sequence  is denoted . Observe that

which provides the link between  and  in an induction proof.

 

Example 

Use mathematical induction to show that, for all integers ,

Proof

Base Step: When , the left-hand side reduces to , and the right-hand side becomes ; hence, the identity
holds when . 
Inductive Step: Assume it holds when  for some integer ; that is, assume for some integer  that

. 
Consider .  

From the inductive hypothesis, we find

 

  

i.∑
i=1

n

(3.6.9)

i i = 1 ∑ n i = 1

i = 2 i = 3 i = n ∑

= + + +⋯ + .∑
i=1

10

i
2 12 22 32 102 (3.6.10)

n { , , , … }a1 a2 a3 ∑
n

i=1 ai

=( )+ ,∑
i=1

k+1

ai ∑
i=1

k

ai ak+1 (3.6.11)

P (k +1) P (k)

∑
n

i=1
i

2

3.6.2

n ≥ 1

= + + +⋯ + = .∑
i=1

n

i
2 12 22 32

n
2 n(n +1)(2n +1)

6
(3.6.12)

n = 1 = 112 = 11⋅2⋅3
6

n = 1

n = k k ≥ 1 k ≥ 1

=∑
i=1

k

i2
k(k +1)(2k +1)

6
(3.6.13)

n = k +1

= + + +⋯ + +(k +1 .∑
i=1

k+1

i
2 12 22 32

k
2 )2 (3.6.14)

= +(k +1∑
i=1

k+1

i
2 ∑

i=1

k

i
2 )2 (3.6.15)

= +(k +1
k(k +1)(2k +1)

6
)2 (3.6.16)

=
k(k +1)(2k +1) +6(k +1)2

6
(3.6.17)
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Therefore, the identity also holds when .  
Thus, by PMI for all integers ,

hands-on exercise 

It is time for you to write your own induction proof. Prove that

for all integers .

hands-on exercise 
Use induction to prove that, for all positive integers ,

hands-on exercise 

Use induction to prove that, for all positive integers ,

All three steps in an induction proof must be completed; otherwise, the proof may not be correct.

Example 

Can we just use examples?

Never attempt to prove  by examples alone. Consider

In the inductive step, we want to prove that

The following table verifies that it is true for :

(k +1)[k(2k +1) +6(k +1)]

6
(3.6.18)

(k +1)(2 +7k +6)k2

6
(3.6.19)

(k +1)(k +2)(2k +3)

6
(3.6.20)

.
(k +1)(k +2)(2(k +1) +1)

6
(3.6.21)

n = k +1

n ≥ 1

= + + +⋯ + = .∑
i=1

n

i2 12 22 32 n2
n(n +1)(2n +1)

6
(3.6.22)

3.6.1

1 ⋅ 2 +2 ⋅ 3 +3 ⋅ 4 +⋯ +n(n +1) =
n(n +1)(n +2)

3
(3.6.23)

n ≥ 1

3.6.2

n

1 ⋅ 2 ⋅ 3 +2 ⋅ 3 ⋅ 4 +⋯ +n(n +1)(n +2) = .
n(n +1)(n +2)(n +3)

4
(3.6.24)

3.6.3

n

1 + + +⋯ + = .41 42 4n −14n+1

3
(3.6.25)

3.6.3

P (k) ⇒ P (k +1)

P (n) : +n +11 is prime.n2 (3.6.26)

P (k) ⇒ P (k +1)  for ANY k ≥ 1. (3.6.27)

1 ≤ k ≤ 9
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Nonetheless, when ,  is composite. So  is false. The inductive step breaks down
when .

Example 
The base step is equally important. Consider proving

for all . Assume  is true for some integer ; that is, assume  for some integer . Then

Therefore,  can be written in the same form. This proves that  is also true. Does it follow that  is
true for all integers ? We know that  cannot be written as a multiple of 3. What is the problem?

Solution

The problem is: we need  to be true for at least one value of  so as to start the sequence of implications

The induction fails because we have not established the basis step. In fact,  is false. Since the first domino does not fall,
we cannot even start the chain reaction.

Remark

Thus far, we have learned how to use mathematical induction to prove identities. In general, we can use mathematical induction to
prove a statement about . This statement can take the form of an identity, an inequality, or simply a verbal statement about . We
shall learn more about mathematical induction in the next few sections.

Summary and Review
Mathematical induction can be used to prove that a statement about  is true for all integers .
We have to complete three steps.
In the base step, verify the statement for .
In the inductive hypothesis, assume that the statement holds when  for some integer .
In the inductive step, use the information gathered from the inductive hypothesis to prove that the statement also holds when 

.
Be sure to complete all three steps.
Pay attention to the wording. At the beginning, follow the template closely. When you feel comfortable with the whole process,
you can start venturing out on your own.

Exercises 

Exercise 
Use induction to prove that

for all integers .

Exercise 

Use induction to prove that the following identity holds for all integers :

n

+n +11n2

1

13

2

17

3

23

4

31

5

41

6

53

7

67

8

83

9

101
(3.6.28)

n = 10 +n +11 = 121n2 P (9) ⇒ P (10)

k = 9

3.6.4

P (n) : 3n +2 = 3q for some integer q (3.6.29)

n ∈ N P (k) k ≥ 1 3k +2 = 3q q

3(k +1) +2 = 3k +3 +2 = 3 +3q = 3(1 +q). (3.6.30)

3(k +1) +2 P (k +1) P (n)

n ≥ 1 3n +2

P (k) k

P (1) ⇒ P (2), P (2) ⇒ P (3), P (3) ⇒ P (4), … (3.6.31)

P (1)

n n

n n ≥ a

n = a

n = k k ≥ a

n = k +1

3.6.1

+ + +⋯ + =13 23 33 n3 (n +1n2 )2

4
(3.6.32)

n ≥ 1

3.6.2

n ≥ 1

1 +3 +5 +⋯ +(2n −1) = .n
2 (3.6.33)
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Proof

Base Case: consider .   and  so the LHS & RHS are both 1. This works for  .

Inductive Step: Assume this works for some integer,  In other words,  (Inductive
Hypothesis)

Consider the case of     

 

 

; assuming our proposition works for  it will also work for 

By PMI,  for all integers,  .

Exercise 

Use induction to show that

for all positive integers .

Exercise 
Use induction to establish the following identity for any integer :

Exercise 

Use induction to show that, for any integer :

Exercise 

Use induction to prove the following identity for integers :

Exercise 

Prove  is divisible by 3, for all integers 

Proof

Base Case: consider .     is divisible by 3 because 0 = 0(3).

Inductive Step: Assume this works for some integer,  In other words,  is divisible by 3. (Inductive Hypothesis)

n = 1 2(1) −1 = 1 = 112
n = 1

k ≥ 1. 1 +3 +5 +⋯ +(2k −1) = .k2

n = k +1. 1 +3 +5 +⋯ +(2k −1) +(2(k +1) −1)

= +(2(k +1) −1) by inductive hypothesisk2 (3.6.34)

= +2k +2 −1 = +2k +1 = (k +1  by algebrak2 k2 )2 (3.6.35)

1 +3 +5 +⋯ +(2(k +1) −1) = (k +1)2 k k +1.

1 +3 +5 +⋯ +(2n −1) = n2 n ≥ 1

W 5

3.6.3

1 + + +⋯ + = (1 − )
1

3

1

32

1

3n

3

2

1

3n+1
(3.6.36)

n

3.6.4

n ≥ 1

1 −3 +9 −⋯ +(−3 = .)n 1 −(−3)n+1

4
(3.6.37)

3.6.5

n ≥ 1

i ⋅ i! = (n +1)! −1.∑
i=1

n

(3.6.38)

3.6.6

n ≥ 1

= .∑
i=1

n 1

(2i −1)(2i +1)

n

2n +1
(3.6.39)

3.6.7

−122n
n ≥ 0.

n = 0 −1 = 1 −1 = 0.22(0) 0

k ≥ 0. −122k
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Since  is divisible by 3, there exists some integer, m such that   by definition of divides.

Consider the case of    By algebra:

 

 and   since the integers are closed under addition and multiplication.  

So,  is divisible by 3 by the definition of divisible.

Thus assuming our proposition works for  it will also work for 

By PMI,   is divisible by 3, for all integers 

Exercise 

Evaluate  for a few values of . What do you think the result should be? Use induction to prove your conjecture.

Exercise 

Use induction to prove that

whenever  is a positive integer.

Exercise 
Use induction to show that, for any integer :

Exercise 

Use mathematical induction to show that

for all integers .

Exercise 
Use mathematical induction to show that

for all integers .

Answer

No answer here at this time.

−122k −1 = 3m,22k

n = k +1.

−1 = −1 = ⋅ −1 = ⋅ 4 −1 = ⋅ (3 +1) −1 = 3 ⋅ + −122(k+1) 22k+2 22k 22 22k 22k 22k 22k (3.6.40)

= 3 ⋅ +3m by inductive hypothesis22k (3.6.41)

= 3( +m) by algebra22k (3.6.42)

−1 = 3( +m)22(k+1) 22k ( +m) ∈ Z22k

−122(k+1)

k k +1.

−122n n ≥ 0.

W 5

3.6.8

∑
n

i=1
1

i(i+1)
n

3.6.9

(2i −1 = (2 −1)∑
i=1

n

)3 n2 n2 (3.6.43)

n

3.6.10

n ≥ 1

− + −⋯ +(−1 = (−1 .12 22 32 )n−1
n

2 )n−1 n(n +1)

2
(3.6.44)

3.6.11

=∑
i=1

n
i +4

i(i +1)(i +2)

n(3n +7)

2(n +1)(n +2)
(3.6.45)

n ≥ 1

3.6.12

3 + (3 +5i) =∑
i=1

n (n +1)(5n +6)

2
(3.6.46)

n ≥ 1
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3.7: The Well-Ordering Principle
Number theory studies the properties of integers. Some basic results in number theory rely on the existence of a certain number.
The next theorem can be used to show that such a number exists.

The Well-Ordering Principle
Every nonempty subset of  has a smallest element.

Proof

In fact, we cannot prove the principle of well-ordering with just the familiar properties that the natural numbers satisfy under
addition and multiplication. Hence, we shall regard the principle of well-ordering as an axiom. Interestingly though, it turns
out that the principle of mathematical induction and the principle of well-ordering are logically equivalent.  This means if
you accept one as an axiom, you can use that to prove the other.

Theorem 

The Principle of Mathematical Induction holds if and only if the Well-Ordering Principle holds.

Proof

( ) Suppose  is a nonempty set of natural numbers that has no smallest element. Let

Since  does not have a smallest element, it is clear that . It is also obvious that . Assume . Then any
natural number less than or equal to  must also be less than or equal to  for every . Hence . Because 

, we find . If , then  would have been the smallest element of . This
contradiction shows that . Therefore, the principle of mathematical induction would have implied that .
That would make  an empty set, which contradicts the assumption that  is nonempty. Therefore, any nonempty set of
natural numbers must have a smallest element.

( ) Let  be a set of natural numbers such that

,

For any , if , then .

Suppose . Then . The principle of well-ordering states that  has a smallest element . Since ,
we deduce that , which makes . The minimality of  implies that . Hence, . Condition
(ii) implies that , which is a contradiction. Therefore, .

The principle of well-ordering is an existence theorem. It does not tell us which element is the smallest integer, nor does it tell us
how to find the smallest element.

Example 
Consider the sets

It is easy to check that all three sets are nonempty, and since they contain only positive integers, the principle of well-ordering
guarantees that each of them has a smallest element.

These smallest elements may not be easy to find. It is obvious that the smallest element in  is 3. To find the smallest element
in , we need , which means . Since  has to be an integer, we need . Since 

N

3.7.2

⇒ S

R = {x ∈ N ∣ x ≤ s for every s ∈ S}. (3.7.1)

S R∩S = ∅ 1 ∈ R k ∈ R

k s s ∈ S 1, 2, … , k ∈ R

R∩S = ∅ 1, 2, … , k ∉ S k+1 ∈ S k+1 S

k+1 ∈ R R =N

S S

⇐ S

1 ∈ S

k ≥ 1 k ∈ S k+1 ∈ S

S ≠N =N−S ≠ ∅S
¯¯̄

S
¯¯̄

z 1 ∈ S

z ≥ 2 z−1 ≥ 1 z z−1 ∉ S
¯¯̄

z−1 ∈ S

z ∈ S S =N

3.7.1

A

B

C

=

=

=

{n ∈ N ∣ n is a multiple of 3},

{n ∈ N ∣ n = −11 +7m for some m ∈ Z},

{n ∈ N ∣ n = −8x+12 for some x ∈ Z}.x2

A

B −11 +7m > 0 m > 11/7 ≈ 1.57 m m ≥ 2
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 is an increasing function in , its smallest value occurs when . The smallest element in  is 
.

To determine the smallest element in , we need to solve the inequality . Factorization leads to 
, so we need  or . Because , we determine that the minimum value of 

 occurs at  or . Since

The smallest element in  is 5.

Example 
The principle of well-ordering may not be true over real numbers or negative integers. In general, not every set of integers or
real numbers must have a smallest element. Here are two examples:

The set .

The open interval .

The set  has no smallest element because given any integer , it is clear that , and this argument can be repeated
indefinitely. Hence,  does not have a smallest element.

A similar problem occurs in the open interval . If  lies between 0 and 1, then so is , and  lies between 0 and , such
that

This process can be repeated indefinitely, yielding

We keep getting smaller and smaller numbers. All of them are positive and less than 1. There is no end in sight, hence the
interval  does not have a smallest element.

The idea behind the principle of well-ordering can be extended to cover numbers other than positive integers.

Definition
A set  of real numbers is said to be well-ordered if every nonempty subset of  has a smallest element.

Therefore, according to the principle of well-ordering,  is well-ordered.

Example 
Show that  is not well-ordered.

Solution

Suppose  is the smallest element in . Then  is a rational number that is smaller than , which contradicts the
minimality of . This shows that  does not have a smallest element. Therefore  is not well-ordered.

[eg:PWO-03]

hands-on exercise 

Show that the interval  is not well-ordered by finding a subset that does not have a smallest element

Summary and Review
A set of real numbers is said to be well-ordered if every nonempty subset in it has a smallest element.
A well-ordered set must be nonempty and have a smallest element.
Having a smallest element does not guarantee that a set of real numbers is well-ordered.

−11 +7m m m = 2 B

−11 +7 ⋅ 2 = 3

C −8x+12 > 0x2

−8x+12 = (x−2)(x−6) > 0x2 x < 2 x > 6 x ∈ Z

−8x+12x2 x = 1 x = 7

−8 ⋅ 1 +12 = −8 ⋅ 7 +12 = 5,12 72 (3.7.2)

C

3.7.2

Z

(0, 1)

Z x x−1 < x

Z

(0, 1) x x

2
x

2
x

0 < x < 1 ⇒ 0 < < x < 1.
x

2
(3.7.3)

0 < ⋯ < < ⋯ < < < < x < 1.
x

2n
x

23

x

22

x

2
(3.7.4)

(0, 1)

T T

N

3.7.3

Q

x Q x−1 x

x Q Q

3.7.1

[0, 1]
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A well-ordered set can be finite or infinite, but a finite set is always well-ordered.

Exercises 

Exercise 
Find the smallest element in each of these subsets of .

a)  .

b)  .

c)  .

d)   and .

Exercise 

Determine which of the following subsets of  are well-ordered:

1. 
2. 
3. 
4. 
5. 
6. 

Exercise 
Show that the interval  is not well-ordered.

Hint

Find a subset of  that does not have a smallest element.

Exercise 
Assume . Show that if  is well-ordered, then  is also well-ordered.

Hint

Let  be a nonempty subset of . We want to show that  has a smallest element. To achieve this goal, note that .

Exercise 

Prove that  is well-ordered

Exercise 
Assume . Prove that if  does not have a smallest element, then  is not well-ordered.

This page titled 3.7: The Well-Ordering Principle is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris
Kwong (OpenSUNY) .

3.7.1

N

{n ∈ N ∣ n = −10m+28 for some integerm2 m}

{n ∈ N ∣ n = 5q+3 for some integer q}

{n ∈ N ∣ n = −150 −17d for some integer d}

{n ∈ N ∣ n = 4s+9t for some integers s t}

3.7.2

R

{ }
{−9, −7, −3, 5, 11}
{0} ∪Q+

2Z
5N
{−6, −5, −4, … }

3.7.3

[3, 5]

[3, 5]

3.7.4

∅ ≠ ⊆ ⊆RT1 T2 T2 T1

S T1 S ⊆T1 T2

3.7.5

2N

3.7.6

∅ ≠ ⊆ ⊆RT1 T2 T1 T2
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3.8: More on Mathematical Induction
Here are some more examples of mathematical induction.

Example 
Prove that  is a multiple of 6 for all integers .

Remark

We have already seen how to prove this claim using a proof by cases, which is actually an easier way to prove that 
 is divisible by 6. Nonetheless, we shall demonstrate below how to use induction to prove the claim.

Discussion

In the inductive hypothesis, it is clear that we are assuming  is a multiple of 6. In the inductive step, we
want to prove that

is also a multiple of 6. A multiple of 6 can be written as  for some integer . Since we have two multiples of 6, we need to
write

and

to distinguish them. By using the lowercase and uppercase of the same letter, we indicate that they are different values. Yet,
because they come from the same letter, they both share some common attribute, in this case, being the quotients when the
respective values are divided by 6.

Now, in the inductive step, we need to make use of the equation  from the inductive hypothesis. This
calls for connecting the product  to the expression . Since they share the common
factor , what remains to do is write  in terms of .

We are asked to prove that  is a multiple of 6. This is not an identity. Therefore, do not say “assume/show
that the identity holds when … .” Instead, say “assume/show that the claim is true when … .”

Solution

Proceed by induction on . When , we have , which is clearly a multiple of 6.
Hence, the claim is true when . Assume the claim is true when  for some integer ; that is, assume that we
can write

for some integer . We want to show that the claim is still true when ; that is, we want to show that

for some integer . Using the inductive hypothesis, we find

where  is clearly an integer. This completes the induction.

3.8.1

n(n +1)(2n +1) n ≥ 1

n(n +1)(2n +1)

k(k +1)(2k +1)

(k +1)(k +2)[2(k +1) +1] = (k +1)(k +2)(2k +3) (3.8.1)

6q q

k(k +1)(2k +1) = 6q (3.8.2)

(k +1)(k +2)(2k +3) = 6Q (3.8.3)

k(k +1)(2k +1) = 6q

(k +1)(k +2)(2k +3) k(k +1)(2k +1)
k +1 (k +2)(2k +3) k(2k +1)

n(n +1)(2n +1)

n n = 1 n(n +1)(2n +1) = 1 ⋅ 2 ⋅ 3 = 6
n = 1 n = k k ≥ 1

k(k +1)(2k +1) = 6q (3.8.4)

q n = k +1

(k +1)(k +2)[2(k +1) +1] = (k +1)(k +2)(2k +3) = 6Q (3.8.5)

Q

(k +1)(k +2)(2k +3) =

=

=

=

=

=

(k +1)(2 +7k +6)k2

(k +1)[(2 +k) +(6k +6)]k
2

(k +1)[k(2k +1) +6(k +1)]

k(k +1)(2k +1) +6(k +1)2

6q +6(k +1)2

6 [q +(k +1 ],)2

q +(k +1)2
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hands-on exercise 
Prove that  is even for all integers .

Induction can also be used to prove inequalities, which often require more work to finish.

Example 
Prove that

for all positive integers .

Draft. In the inductive hypothesis, we assume that the inequality holds when  for some integer . This means we
assume

In the inductive step, we want to show that it also holds when . In other words, we want to prove that

In order to use the inductive hypothesis, we have to find a connection between these two inequalities. Obviously, we have

Hence, it follows from the inductive hypothesis that

The proof would be complete if we could show that

There is no guarantee that this idea will work, but this should be the first thing we try.

After rearrangement, the inequality becomes

which is equivalent to . Cross-multiplication yields

Since

it is clear that what we want to prove is indeed true.

Polish It Up! Next, we rearrange the argument to make it read more smoothly. Essentially all we need is to run the argument
backward. To improve the flow of the argument, we can prove a separate result on the side before we return to the main
argument.

Proof 1

3.8.1

+3n +2n2 n ≥ 1

3.8.2

1 + +⋯ + ≤ 2 −
1

4

1

n2

1

n
(3.8.6)

n

n = k k ≥ 1

≤ 2 − .∑
i=1

k 1

i2

1

k
(3.8.7)

n = k +1

≤ 2 − .∑
i=1

k+1 1

i2

1

k +1
(3.8.8)

=( )+ .∑
i=1

k+1 1

i2
∑
i=1

k 1

i2

1

(k +1)2
(3.8.9)

=( )+ ≤ 2 − + .∑
i=1

k+1 1

i2
∑
i=1

k 1

i2

1

(k +1)2

1

k

1

(k +1)2
(3.8.10)

2 − + ≤ 2 − .
1

k

1

(k +1)2

1

k +1
(3.8.11)

+ ≤ ,
1

k +1

1

(k +1)2

1

k
(3.8.12)

≤
k+2

(k+1)2

1
k

k(k +2) ≤ (k +1 .)2 (3.8.13)

k(k +2) = +2k, and (k +1 = +2k +1,k
2 )2

k
2 (3.8.14)
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Proceed by induction on . When , the left-hand side becomes 1, and so does the right-hand side; thus, the inequality
holds. Assume it holds when  for some integer :

We want to show that it also holds when :

To finish the proof, we need to derive an inequality. Notice that

Hence, after dividing both sides by , we obtain

This leads to

which is equivalent to

We now return to our original problem. It follows from the inductive hypothesis and ([eq:induct2-ineq]) that

Therefore, the inequality still holds when , which completes the induction.

Remark

The key step in the proof is to establish ([eq:induct2-ineq]), which can be done by means of contradiction.

Proof 2

Proceed by induction on . When , the left-hand side becomes 1, and so does the right-hand side; thus, the inequality
holds. Assume it holds when  for some integer :

We want to show that it also holds when :

To finish the proof, we need the following inequality. We claim that

n n = 1
n = k k ≥ 1

≤ 2 − .∑
i=1

k 1

i2

1

k
(3.8.15)

n = k +1

≤ 2 − .∑
i=1

k+1 1

i2

1

k +1
(3.8.16)

k(k +2) = +2k < +2k +1 = (k +1 .k2 k2 )2 (3.8.17)

k(k +1)2

< .
k +2

(k +1)2

1

k
(3.8.18)

+ = = < ,
1

k +1

1

(k +1)2

(k +1) +1

(k +1)2

k +2

(k +1)2

1

k
(3.8.19)

− + < − .
1

k

1

(k +1)2

1

k +1
(3.8.20)

∑
i=1

k+1
1

i2
=

≤

<

( )+∑
i=1

k
1

i2

1

(k +1)2

2 − +
1

k

1

(k +1)2

2 − .
1

k +1

n = k +1

n n = 1
n = k k ≥ 1

≤ 2 − .∑
i=1

k
1

i2

1

k
(3.8.21)

n = k +1

≤ 2 − .∑
i=1

k+1
1

i2

1

k +1
(3.8.22)

− + < − .
1

k

1

(k +1)2

1

k +1
(3.8.23)
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Suppose, on the contrary, that

Clear the denominators by multiplying  to both sides of the inequality. We find

or equivalently,

which is the same as saying . This contradiction proves that ([eq:induct2-ineqalt]) must be true.

We now return to our original problem. It follows from the inductive hypothesis and ([eq:induct2-ineqalt]) that

Therefore, the inequality still holds when , which completes the induction.

hands-on exercise 

Show that  for all integers .

We do not have to start with  in the basis step. We can start with any integer .

Generalization. To show that  is true for all integers , follow these steps:

a. Verify that  is true.
b. Assume that  is true for some integer .
c. Show that  is also true.

The major difference is in the basis step: we need to verify that  is true. In addition, in the inductive hypothesis, we need to
stress that .

Example 
Use mathematical induction to show that

for all integers .

Solution

Proceed by induction on . When , the left-hand side reduces to , and the right-hand side becomes 
. Hence, the formula holds when . Assume it holds when  for some integer ; that

is, assume

We want to show that it also holds when ; that is,

− + ≥ − .
1

k

1

(k +1)2

1

k +1
(3.8.24)

k(k +1)2

−(k +1 +k ≥ −k(k +1),)2 (3.8.25)

− −k −1 ≥ − −k,k2 k2 (3.8.26)

−1 ≥ 0

∑
i=1

k+1 1

i2
=

≤

<

( )+∑
i=1

k 1

i2

1

(k +1)2

2 − +
1

k

1

(k +1)2

2 − .
1

k +1

n = k +1

3.8.2

n < 2n
n ≥ 1

n = 1 n0

P (n) n ≥ n0

P ( )n0

P (k) k ≥ n0

P (k +1)

P ( )n0

k ≥ n0

3.8.3

= ( −1)∑
i=0

n

4i 1

3
4n+1 (3.8.27)

n ≥ 0

n n = 0 = = 1∑0
i=0 4i 40

( −1) = ⋅ 3 = 11
3

41 1
3

n = 0 n = k k ≥ 0

= ( −1).∑
i=0

k

4i 1

3
4k+1 (3.8.28)

n = k +1
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Using the inductive hypothesis, we find

which is what we want to prove, thereby completing the induction.

hands-on exercise 

Prove that, for any integer ,

Example 
Use mathematical induction to show that

for all integers .

Solution

Proceed by induction on . When , the inequality becomes , which is obviously true. Assume it holds when 
 for some integer :

We want to show that it still holds when :

Since , it follows from the inductive hypothesis that

Therefore, the inequality still holds when . This completes the induction.

Summary and Review
We can use induction to prove a general statement involving an integer .
The statement can be an identity, an inequality, or a claim about the property of an expression involving .
An induction proof need not start with .
If we want to prove that a statement is true for all integers , we have to verify the statement for  in the basis step.
In addition, we need to assume that  in the inductive hypothesis.

Exercises 

Exercise 
Use induction to prove that  is a multiple of 3 for all integers .

= ( −1).∑
i=0

k+1

4i 1

3
4k+2 (3.8.29)

∑
i=0

k+1

4i

[3pt]

[3pt]

[3pt]

=

=

=

=

=

( )+∑
i=0

k

4i 4k+1

( −1) +1
3

4k+1 4k+1

( −1 +3 ⋅ )1
3

4k+1 4k+1

(4 ⋅ −1)1
3

4k+1

( −1),1
3

4k+2

3.8.3

n ≥ 0

1 + + +⋯ + = 3 [1 − ] .
2

3

4

9
( )

2

3

n

( )
2

3

n+1

(3.8.30)

3.8.4

≥nn 2n (3.8.31)

n ≥ 2

n n = 2 ≥22 22

n = k k ≥ 2

≥ .kk 2k (3.8.32)

n = k +1

(k +1 ≥ .)k+1 2k+1 (3.8.33)

k ≥ 2

(k +1 ≥ = k ⋅ ≥ 2 ⋅ = .)k+1 kk+1 kk 2k 2k+1 (3.8.34)

n = k +1

n

n

n = 1
n ≥ n0 n = n0

k ≥ n0

3.8.1

n(n +1)(n +2) n ≥ 1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/24650?pdf


3.8.6 https://math.libretexts.org/@go/page/24650

Exercise 
Use induction to show that  is a multiple of 6 for any nonnegative integer .

Exercise 
Use induction to prove that

for all integers .

Exercise 

Use induction to prove that

for all integers .

Exercise 

Use induction to prove that

for all nonnegative integers , where  and  are real numbers with .

Exercise 
Use induction to prove that, for any integer ,

Exercise 

Use induction to prove that, for any integer ,

Exercise 

Use induction to show that  for all integers .

Exercise 

Use induction to prove that  for all integers .

Exercise 
Prove that  for all integers .

Exercise 
Define

3.8.2

+5nn3 n

3.8.3

2 +(1 + + +⋯ + ) > 2
1

2
–

√

1

3
–

√

1

n
−−

√
n +1
− −−−−

√ (3.8.35)

n ≥ 1

3.8.4

2(1 + + +⋯ + ) ≤ 3 −
1

8

1

27

1

n3

1

n2
(3.8.36)

n ≥ 1

3.8.5

a +ar +a +⋯ +a =r
2

r
n a( −1)rn+1

r −1
(3.8.37)

n a r r ≠ 1

3.8.6

n ≥ 2

6 i(i +2) = 2 +9 +7n −18.∑
i=2

n

n
3

n
2 (3.8.38)

3.8.7

n ≥ 0

1 − + +⋯ + = [1 − ] .
2

5

4

25
(− )

2

5

n
5

7
(− )

2

5

n+1

(3.8.39)

3.8.8

n! > 2n n ≥ 4

3.8.9

> 4n +1n2 n ≥ 5

3.8.10

2n +1 < 2n n ≥ 3

3.8.11

= + + +⋯ + .Sn

1

2!

2

3!

3

4!

n

(n +1)!
(3.8.40)
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a. Evaluate  for .
b. Propose a simple formula for .
c. Use induction to prove your conjecture for all integers .

Exercise 

Define .

a. Evaluate  for .
b. Propose a simple formula for .
c. Use induction to prove your conjecture for all integers .

This page titled 3.8: More on Mathematical Induction is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Harris Kwong (OpenSUNY) .

Sn n = 1, 2, 3, 4, 5
Sn

n ≥ 1

3.8.12

=Tn ∑n
i=0

1
(2i+1)(2i+3)

Tn n = 0, 1, 2, 3, 4
Tn

n ≥ 0
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4.1: An Introduction to Sets

Introduction & Real Number Subsets

Note: Some information from section 1.5 is repeated here for a refresher; however, there is new material in this section as well and
the exercises are different. (See the Table of Contents.)

A set is a collection of objects. The objects in a set are called its elements or members. The elements in a set can be any types of
objects, including sets! The members of a set do not even have to be of the same type. For example, although it may not have any
meaningful application, a set can consist of numbers and names.

We usually use capital letters such as , , , , and  to represent sets, and denote their generic elements by their corresponding
lowercase letters , , , , and , respectively. To indicate that  is an element of the set , we adopt the notation , which
means “  belongs to ” or “  is an element of .

We designate these notations for some special sets of numbers:

All these are infinite sets, because they all contain infinitely many elements. In contrast, finite sets contain finitely many elements.

Roster Notation
We can use the roster notation to describe a set if we can list all its elements explicitly, as in

For sets with more elements, show the first few entries to display a pattern, and use an ellipsis to indicate “and so on.” For example,

represents the set of the first 20 positive integers. The repeating pattern can be extended indefinitely, as in

 The set of even integers can be described as .

Set-Builder Notation
We can use a set-builder notation to describe a set. For example, the set of natural numbers is defined as

Here, the vertical bar  is read as “such that” or “for which.” Hence, the right-hand side of the equation is pronounced as “the set of 
 belonging to the set of integers such that ,” or simply “the set of integers  such that .” In general, this descriptive

method appears in the format

The notation  means “such that” or “for which” only when it is used in the set notation. It may mean something else in a different
context. Therefore, do not write “let  be a real number  ” if you want to say “ let  be a real number such that .” It
is considered improper to use a mathematical notation as an abbreviation.

Example 

Write these two sets

by listing their elements explicitly.

A B C S T

a b c s t b B b ∈ B

b B b B

R

Q

Z

N

=
=

=
=

the set of real numbers,
the set of rational numbers,

the set of integers,
the set of natural numbers (positive integers).

A = the set of natural numbers not exceeding 7 = {1, 2, 3, 4, 5, 6, 7}. (4.1.1)

{1, 2, 3, … , 20} (4.1.2)

.
N

Z

=

=

{1, 2, 3, …}

{… , −2, −1, 0, 1, 2, …}

{… , −4, −2, 0, 2, 4, …}

N = {x ∈ Z ∣ x > 0}. (4.1.3)

∣
x x > 0 x x > 0

{ membership ∣ properties }. (4.1.4)

∣
x ∣ > 3x2 x > 3x2

4.1.1

{x ∈ Z ∣ ≤ 1} and {x ∈ N ∣ ≤ 1}x2 x2 (4.1.5)
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Answer

The first set has three elements, and equals . The second set is a singleton set; it is equal to .

There is a slightly different format for the set-builder notation. Before the vertical bar, we describe the form the elements assume,
and after the vertical bar, we indicate from where we are going to pick these elements:

Here the vertical bar  means “where.” For example,

is the set of  where . It represents the set of squares: .

Example 
The set

describes the set of even numbers. We can also write the set as .

Note
If the membership is not specified, such as:  then it is understood that  is the default set that  belongs to. 

Interval Notation

An interval is a set of real numbers, all of which lie between two real numbers. Should the endpoints be included or excluded
depends on whether the interval is open, closed, or half-open. We adopt the following interval notation to describe them:

It is understood that  must be less than  . Hence, the notation  does not make much sense. How about ? This may be
used in some texts to mean  but we will only use  for intervals and use roster notation for a single number such as 

An interval contains not just integers, but all real numbers between the two endpoints.  For instance,  because the
interval  also includes real numbers such at , , and .

We can use  in the interval notation:

However, we cannot write  or , because  are not numbers. It is nonsense to say  or . For the
same reason, we can write  and , but not  or .

Example 
Write the intervals , , and  in the descriptive form.

Solution

According to the definition of an interval, we find

What would you say about ?

{−1, 0, 1} {1}

{ pattern ∣ membership }. (4.1.6)

∣

{ ∣ x ∈ Z}x2 (4.1.7)

x2 x ∈ Z {0, 1, 4, 9, 16, 25, …}

4.1.2

{2n ∣ n ∈ Z} (4.1.8)

2Z

{x | ≤ 5}x2 R x

(a, b) = {x ∈ R ∣ a < x < b},

[a, b] = {x ∈ R ∣ a ≤ x ≤ b},

[a, b) = {x ∈ R ∣ a ≤ x < b},

(a, b] = {x ∈ R ∣ a < x ≤ b}.

(4.1.9)

a b (5, 3) [3, 3]
3 a < b 3.

(1, 5)≠{2, 3, 4}
(1, 5) 1.276 2

–
√ π

±∞

(a, ∞)

(−∞, a)

=

=

{x ∈ R ∣ a < x},

{x ∈ R ∣ x < a}.

(a, ∞] [−∞, a) ±∞ x ≤ ∞ −∞ ≤ x

[a, ∞) (−∞, a] [a, ∞] [−∞, a]

4.1.3

(2, 3) [2, 3] (2, 3]

(2, 3)

[2, 3]

(2, 3]

=

=

=

{x ∈ R ∣ 2 < x < 3},

{x ∈ R ∣ 2 ≤ x ≤ 3},

{x ∈ R ∣ 2 < x ≤ 3}.

[2, 3)
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Example 
Be sure you are using the right types of numbers. Compare these two sets

One consists of integers only, while the other contains real numbers. Thus, , and .

Let  be a set of numbers; we define

In plain English,  is the subset of  containing only those elements that are positive,  contains only the negative elements of 
, and  contains only the nonzero elements of .

Example 

It should be obvious that .

Some mathematicians also adopt these notations:

Accordingly, we can write the set of even integers as , and the set of odd integers can be represented by .

Empty Set
An empty set is a set that does not contain any elements.

 is an example of an empty set. We use an empty set as a convenient way of declaring that a problem has no solution: we say that
the solution set is an empty set. We denote an empty set with the notation  or . Notice we say "an" empty set.  We will need to
prove uniqueness in order to call it "the" empty set.

Example 
Determine which of these statements are true.

Solution

The answers are: true, true, false, and false, respectively.

Equality of Sets
Two sets  and  are said to be equal if they contain the same collection of elements. More rigorously, we define

Since the elements of a set can themselves be sets, exercise caution and use proper notation when you compare the contents of
two sets.

Note: We will also use subsets for another definition for equality ofsets in the next section.

4.1.5

S

T

=

=

{x ∈ Z ∣ ≤ 5},x2

{x ∈ R ∣ ≤ 5}.x2

S = {−2, −1, 0, 1, 2} T = [ − , ]5
–

√ 5
–

√

S

S+

S−

S∗

=

=

=

{x ∈ S ∣ x > 0},

{x ∈ S ∣ x < 0},

{x ∈ S ∣ xNeq0}.

S+ S S−

S S∗ S

4.1.6

N =Z
+

bS

a +bS

=

=

{bx ∣ x ∈ S},

{a +bx ∣ x ∈ S}.

2Z 1 +2Z

{x ∈ R ∣ x > 0 and x < 0} (4.1.10)

∅ { }

4.1.7

{x ∈ R ∣ ( +2)( +3) = 0}x2 x2

{x ∈ Z ∣ ( −2)( +3) = 0}x2 x2

{x ∈ R ∣ ( −2)( +3) = 0}x2 x2

{x ∈ R ∣ ( −2)( +3) ≥ 0}x2 x2

=

=

=

=

∅,

∅,

∅,

∅.

A B

A = B ⇔ ∀x (x ∈ A ⇔ x ∈ B). (4.1.11)
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Example 

Explain why .

Solution

The set  consists of two elements: the integer  and the set . The set  also consists of two elements, both
of them integers; namely, 0 and 1.

You may find the following analogy helpful. Imagine a set being a box. You open a box to look at its contents. The box itself
can be compared to the curly braces  and . What it holds is exactly what we call the elements of the set it represents. The
contents of the two sets  and  are depicted in the boxes shown in the Figure below (well, not yet - the correct
figure will be inserted at a later time - see if you can use your imagination for now).

(200,80) (0,0)(130,0)2 ( 0, 0)( 0,50)2(1,0)50 ( 0, 0)(50, 0)2(0,1)50 ( 0,50)(50, 0)2(1,1)20 (20,70)(1,0)50 (50, 0)(1,1)20
(70,20)(0,1)50 (20,50)(0,1)20 ( 0, 0, 20,20) (20,20, 70,20) (20,20, 20,50) (15,30)(25, 0)2 (10,30)(10,15)0 (35,30)(10,15)1
(25,25) ( 0, 0)( 0,20)2(1,0)20 ( 0, 0)(20, 0)2(0,1)20 ( 0,20)(20, 0)2(0,0, 8,8) ( 8,28)(1,0)20 (20, 0)(0,0, 8,8) (28, 8)(0,1)20 (
8,20)(0,1) 8 ( 0, 0, 8, 8) ( 8, 8, 28, 8) ( 8, 8, 8,20)

When you open the first box, you find two items. One of them is the number 0; the other is another box that contains the
number 1. The second box also contains two items that are both numbers. What you find in these two boxes is not the same.
Hence, the sets they represent are different.

hands-on exercise 
Name some differences between the sets  and .

Example 
True or false: ?

Solution

The set on the left is , and

It is an infinite set. The set on the right consists of only three elements:

a. the set , which is the set of negative integers,
b. the integer 0, and
c. the set , which is the set of positive integers.

Hence, they are not equal. Notice that

either, because the set on the right is a set of three sets, while the set on the left is a set of integers. One has three elements;
the other has infinitely many elements.

To reduce confusion, instead of saying a set of sets, we could say a collection of sets or a family of sets. For example,

is a family of two sets, one of which is the set of positive odd integers; the other is the set of positive even integers.

Cardinality of Finite Sets
A set is said to be finite if it has a finite number of elements. The number of elements in a finite set  is called its cardinality,
and is denoted by . Hence,  is always nonnegative. If  is an infinite set, some authors would write ; however,

4.1.9

{0, {1}} ≠ {0, 1}

{0, {1}} 0 {1} {0, 1}

{ }
{0, {1}} {0, 1}

4.1.10

{0, {1}} {{0}, {1}}

4.1.10

Z = {{… , −3, −2, −1}, 0, {1, 2, 3, …}}

Z

Z = {… , −3, −2, −1, 0, 1, 2, 3, …}. (4.1.12)

{… , −3, −2, −1}

{1, 2, 3, …}

Z ≠ {{… , −3, −2, −1}, {0}, {1, 2, 3, …}} (4.1.13)

{{1, 3, 5, … , }, {2, 4, 6, … }} (4.1.14)

A

|A| |A| A |A| = ∞
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we will use more specific designations for the cardinality of infinite sets.  More will be revealed in the next chapter about the
cardinality of infinite sets.

Example 

While it is trivial that , and , it may not be obvious that

and

What matters is the number of entries in a set, which can be compared to how many items you can find when you open a box.
Here is another example:

because the equation  has two real solutions. What is ?

hands-on exercise 
Determine these cardinalities:

a. 
b. 
c. 

Recall that your answers should be nonnegative.

hands-on exercise 

Explain why it is incorrect to say . In fact, it is nonsense to say . Explain. What should be the value of ?

We close this section with an important remark about sets. It follows from the definition of equality of sets that we do not count
repeated elements as separate elements. For example, suppose a small student club has three officers:

chair: Mary,

vice chair: John,

secretary: John;

and let  represent the set of its officers, and  the set of positions in its executive board, then  and , because

and

Example 

Find the errors in the following statement:

and correct them.

Solution

This statement contains several errors. The first mistake is assuming that we can distribute the “absolute value” symbols 
over the contents of a set:

4.1.11

|{1, 4, 7, 8}| = 4 |{0, 1}| = 2

{0, {1}} = 2,∣∣ ∣∣ (4.1.15)

{{… , −3, −2, −1}, 0, {1, 2, 3, … }}| = 3.∣∣ (4.1.16)

|{x ∈ R ∣ = 9}| = 2x2 (4.1.17)

= 9x2 |{x ∈ N ∣ = 9}|x2

4.1.11

|{x ∈ Z ∣ −7x −6 = 0}|x2

|{x ∈ R ∣ −x −12 < 0}|x2

|{x ∈ Z ∣ x is prime and x is even}|

4.1.12

|∅| = ∅ |∅| = ∅ |∅|

A B |A| = 2 |B| = 3

A = {Mary, John}, (4.1.18)

B = {chair, vice chair, secretary}. (4.1.19)

4.1.12

|{−2, 2}| = { | −2|, |2|} = {2} = 2, (4.1.20)

| |

|{−2, 2}|Neq{ | −2|, |2|}. (4.1.21)
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After all, the two vertical bars do not mean absolute value in this case. Instead, it means the cardinality of the set .
Hence, .

The second equality  is correct. After taking absolute values, both entries become 2. However, we do not
write , because a set should not contain repetition. Therefore, it is correct to say .

The last equality  is wrong. We cannot compare a set to a number. Imagine the set  as a box containing only one
object, and that object is the number 2. In contrast, 2 on the right-hand side is left in the open air without any containment. It
is clear that .

The entire statement contains multiple mistakes; some of them are syntactical errors while some are conceptual.
Nevertheless, we do have . Although the final answer is correct, the argument used to obtain it is not.

In some situations, we do want to count repeated elements as separate elements, as in . We call such a
collection a multiset instead of an ordinary set. In this case, .

Summary and Review
A set is a collection of objects (without repetitions).
To describe a set, either list all its elements explicitly, or use a descriptive method.
Intervals are sets of real numbers.
The elements in a set can be any type of object, including sets.
We can even have a set containing dissimilar elements. In particular, we can mix elements and sets inside a set.
An empty set is a set with no elements.
If a set  is finite, its cardinality  is the number of elements it contains. Consequently,  is always nonnegative.

Exercises 

Exercise 

Write each of these sets by listing its elements explicitly (that is, using the roster method).

(a)  
(b) 
(c)  
(d) .

Solution

(a)  (b)  (c)  (d) 

Exercise 
Write each of the following sets in the form  with a logical statement  describing the property of .

(a)  
(b)  
(c) 

Solution

(a) 

(b) 

(c) 

Exercise 
Whenever possible, express these sets in the form , , , or  for some appropriate set . 
(a)  
(b)  

{−2, 2}
|{−2, 2}| = 2

{ | −2|, |2|} = {2}
{| −2|, |2|} = {2, 2} { | −2|, |2|} = {2}

{2} = 2 {2}

{2} ≠ 2

|{−2, 2}| = 2

S = {1, 2, 2, 2, 3, 3, 4, 4}
|S| = 8

A |A| |A|

4.1.1

{n ∈ Z ∣ −6 < n < 4}
{n ∈ N ∣ −6 < n < 4}
{x ∈ Q ∣ − −6x = 0}x3 x2

{x ∈ Q ∣ −11 +18 = 0}x4 x2

{−5, −4, −3, −2, −1, 0, 1, 2, 3} {1, 2, 3} {0, −2, 3} {−3, 3}

4.1.3

{n ∈ Z ∣ p(n)} p(n) n

{… , −3, −2, −1}
{… , −27, −8, −1, 0, 1, 8, 27, …}
{0, 1, 4, 9, 16, …}

{n ∈ Z ∣ n < 0}

{n ∈ Z ∣ n is a perfect cube}

{n ∈ Z ∣ n is a perfect square}

4.1.5

S+ S− bS a +bS S

{… , −3, −2, −1}
{… , −27, −8, −1, 0, 1, 8, 27, …}
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(c)  
(d)  
(e)  
(f) 

Solution

(a)  (d)  (f) 

Remark. We cannot write (b) as  and (c) as , because  and  mean something else. If we drop 0 from (e), then 
. However, the inclusion of 0 makes it harder to describe (d) in the form of .

Exercise 
Determine whether the following sets are empty, finite sets, or infinite sets:

a. 
b. 
c. 
d. 

Exercise 

Write each of these sets in the interval notation.

(a)  
(b)  
(c) 

Solution

(a)  (b)  (c) 

Exercise 
Is  a legitimate or correct notation? Explain.

Exercise 
Determine which of the following statements are true, and which are false.

(a)  
(b)  
(c)  
(d)  
(e)  
(f) 

Solution

(a) true (b) true (c) false (d) false (e) true (f) true

 

Exercise 

Evaluate the following expressions.

(a)  
(b)  
(c)  

{0, 1, 4, 9, 16, …}
{… , −15, −10, −5, 0, 5, 10, 15, …}
{0, 4, 8, 12, …}
{… , −14, −8, −2, 4, 10, 16, …}

Z− 5Z 4 +6Z

Z3 Z2 Z3 Z2

{4, 8, 12, …} = 4N 4S

4.1.6

{2n +1 ∣ n ∈ N}
{x ∈ R ∣ < 0}x2

{x ∈ Q ∣ x ≥ 0 and x ≤ 0}
{x ∈ N ∣ x < 0 or x > 0}

4.1.7

{x ∈ R ∣ −4 < x < 7}
{x ∈ R ∣ −4 < x ≤ 7}
{x ∈ ∣ −4 < x ≤ 7}R+

(−4, 7) (−4, 7] (0, 7]

4.1.8

[−∞, ∞]

4.1.9

a ∈ {a}
{3, 5} = {5, 3}
∅ ∈ ∅
∅ = {∅}

{ } = ∅
∅ ∈ {∅}

4.1.10

|{x ∈ Z ∣ −4 < x < 7}|
|{x ∈ Z ∣ −4 < x ≤ 7}|

|{x ∈ N ∣ −4 < x ≤ 7}|
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(d)  
(e)  
(f) 

Exercise 

Determine which of the following statements are true, and which are false.

(a)  
(b)  
(c)  
(d) 

Solution

(a) false (b) true (c) true (d) false 

Exercise 
Give examples of sets ,  and  such that:

a.  and , and 
b.  and , and 

Exercise 

Determine whether the following statements are correct or incorrect syntactically. For those that are syntactically correct,
determine their truth values; for those that are syntactically incorrect, suggest ways to fix them.

(a) . 
(b) .

Solution

(a) It is incorrect to write (3,7]=3<x≤7 because (3,7] is a set, but 3<x≤7 is a logical statement. 
(b) No, because both {x∈R∣x2<0} and ∅ are sets, so we should use an equal sign to compare them. The notation ≡ only
applies to logical statements. The correct way to say it is “{x∈R∣x2<0}=∅.”

Exercise 

Determine whether the following statements are correct or incorrect syntactically. For those that are syntactically correct,
determine their truth values; for those that are syntactically incorrect, suggest ways to fix them.

a. .
b. There does not exist  such that  and .
c. If , then  is positive.

This page titled 4.1: An Introduction to Sets is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

|{x ∈ R ∣ −2 −35 = 0}|x4 x3 x2

|{−3, −2, 2, 3}|
|{x ∈ Q ∣ = 3}|x2

4.1.11

2 ∈ (2, 7)
∈ (1, 3)2

–
√

( ∈ Q5
–

√ )
2

−5 ∈ N

4.1.12

A B C

A ∈ B B ∈ C A ∉ C

A ∈ B B ∈ C A ∈ C

4.1.13

(3, 7 ] = 3 < x ≤ 7
{x ∈ R ∣ < 0} ≡ ∅x2

4.1.14

∈ [2, )7
4

7
–

√

x x ∈ R
+

R
−

(0, ∞) x

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/23269?pdf
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/4%3A_Sets/4.1%3A_An_Introduction_to_Sets
https://creativecommons.org/licenses/by-nc-sa/
http://home.fredonia.edu/math/kwong_h
https://textbooks.opensuny.org/


4.2.1 https://math.libretexts.org/@go/page/23270

4.2: Subsets and Power Sets
We usually consider sets containing elements of similar types. The collection of all the objects under consideration is called the
universal set, and is denoted . For example, for numbers, the default universal set is .

Venn Diagrams

Example 
Venn diagrams are useful in demonstrating set relationship. Let

Their relationship is displayed in the figure below.

 Figure : The relationship among various sets of
geometric figures.

The pictorial representation in the figure above is called a Venn diagram. We use a rectangle to represent the universal set, and
circles or ovals to represent the sets inside the universal set. The relative positions of these circles and ovals indicate the
relationship of the respective sets. For example, having , , and  inside  means that rhombuses, squares, and rectangles are
parallelograms. In contrast, circles are incomparable to parallelograms.

Definition: Subset

Set  is a subset of set , denoted by , if every element of  is also an element of . See Figure (figure not here yet).

Symbolicly:

 if and only if 

 Figure : The Venn diagram for .

 In some texts, you may see this notation:  is a superset of , and write , which is similar to .

Example 

It is clear that  and . We can nest these two relationships into one, and write . More generally, we have

U R

4.2.1

U

S

P

R

L

C

=

=
=
=

=
=

set of geometric figures,

set of squares,
set of parallelogram,

set of rhombuses,

set of rectangles,
set of circles.

4.2.1

R S L P

A B A ⊆ B A B

A ⊆ B x ∈ A → x ∈ B.

4.2.2 A ⊆ B

B A B ⊇ A y ≥ x

4.2.2

N ⊆ Z Z ⊆ R N ⊆ Z ⊆ R
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Compare this to . We shall discover many similarities between  and .

Example 

It is obvious that

because all three elements 1, 2, and 7 from the set on the left also appear as elements in the set on the right. Meanwhile,

because 7 belongs to the first set but not the second.

Example 
The following statements are true:

.
.

Be sure you can explain clearly why these subset relationships hold.

hands-on exercise 
Are these statements true or false?

, and .
.

Example 
Do not assume that if  then we must have . For instance, if  and , then ; but we
also have .

The last example demonstrates that  is more complicated than just changing the subset notation as we do with inequalities.
We need a more precise definition of the subset relationship:

It follows that

Hence, to show that  is not a subset of , we need to find an element  that belongs to  but not . There are three possibilities;
their Venn diagrams are depicted in Figure .

Figure : Three cases of .

Example 

We have , and . We also have .

hands-on exercise 

N ⊆ Z ⊆ Q ⊆ R. (4.2.1)

x ≤ y ≤ z ≤ w ⊆ ≤

4.2.3

{1, 2, 7} ⊆ {1, 2, 3, 6, 7, 9} (4.2.2)

{1, 2, 7} ⊈ {1, 2, 3, 6, 8, 9} (4.2.3)

4.2.4

{1, 2, 3} ⊆ N
{x ∈ R ∣ = 1} ⊆ Zx2

4.2.1

{−1, 2} ⊈ N {−1, 2} ⊆ Z
{x ∈ Z ∣ ≤ 1} ⊆ Rx2

4.2.5

A ⊈ B B ⊆ A A = {1, 5, 7} B = {3, 8} A ⊈ B

B ⊈ A

A ⊈ B

A ⊆ B ⇔ ∀x ∈ U (x ∈ A ⇒ x ∈ B) (4.2.4)

A ⊈ B ⇔ ∃x ∈ U (x ∈ A ∧ x ∉ B).

A B x A B

4.2.3

4.2.3 A ⊈ B

4.2.6

[3, 6] ⊆ [2, 7) [3, 6] ⊈ [4, 7) (3, 4) ⊆ [3, 4]

4.2.2
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True or false: ? Explain.

To prove  

To prove a set is a subset of another set, follow these steps.

(1) Let  be an arbitrary element of set .

(2) Show  is an element of set .

This proves every element of set  is an element of .

Example:

Prove 

Let 

See if you can continue this proof.

Continuation of Proof

Since  and  and  
 by definition of rational numbers.

Thus  by substitution.

 

With the notion of universal set, we can now refine the definition for set equality; here's our original definition:

Logically,  is equivalent to

Therefore, we can also define the equality of sets via subset relationship:

Equality of Sets: Subset Definition

which can be compared to

for real numbers  and .

This new definition of set equality suggests that in order to prove that , we could use this two-step argument.

To Prove Sets Equal

(1) Show that .

(2) Show that .

.

This technique is useful when it is impossible or impractical to list the elements of  and  for comparison. This is particularly
true when  and  are defined abstractly. We will apply this technique in the coming sections.

[3, 4) ⊆ (3, 4)

S ⊆ T

x S

x T

S T

Z ⊆ Q.

x ∈ Z.

x = .x
1

x ∈ Z 1 ∈ Z 1 ≠ 0,
∈ Q,x

1

x ∈ Q,

∴ Z ⊆ Q.

A = B ⇔ ∀x ∈ U (x ∈ A ⇔ x ∈ B) (4.2.5)

x ∈ A ⇔ x ∈ B

(x ∈ A ⇒ x ∈ B) ∧ (x ∈ B ⇒ x ∈ A). (4.2.6)

A = B ⇔ (A ⊆ B) ∧ (B ⊆ A) (4.2.7)

x = y ⇔ (x ≤ y) ∧ (y ≤ x) (4.2.8)

x y

A = B

A ⊆ B

B ⊆ A

A B

A B
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The two relationship  and  share many common properties. The transitive property is another example.

Theorem   Transitivity of Subsets

Let , , and  be sets. If  and , then .

Discussion

The theorem statement is in the form of an implication. To prove , we start with the assumption , and use it to show that 
 must also be true. In this case, these two steps become

Assume that  and .
Show that .

How can we prove that ? We know that  means

So we have to start with , and attempt to show that  as well. How can we show that ? We need to use the
assumption  and .

Proof

Assume  and . 
Let . Since ,   by definition of subset. 
Likewise, since ,  by definition of subset.  
Thus    
So we conclude that  by definition of subset.

 if  and , then .

The proof relies on the definition of the subset relationship. Many proofs in mathematics are rather simple if you know the
underlying definitions.

Example  A Biconditional Proof

Prove that , for any element 

Discussion

We call  a biconditional statement because it consists of two implications  and . Hence, we need to prove it in
two steps:

Show that .
Show that .

We call these two implications the necessity and sufficiency of the biconditional statement, and denote them ( ) and ( ),
respectively. In this problem,

( ) means “ ”.
( ) means “ ”.

This is a sketch of how the proof may look:

 Assume   Therefore .

 
 Assume   Therefore  .

We now proceed to finish the proof.

Answer

⊆ ≤

4.2.1

A B C A ⊆ B B ⊆ C A ⊆ C

p ⇒ q p

q

A ⊆ B B ⊆ C

A ⊆ C

A ⊆ C A ⊆ C

∀x ∈ U (x ∈ A ⇒ x ∈ C). (4.2.9)

x ∈ A x ∈ C x ∈ C

A ⊆ B B ⊆ C

A ⊆ B B ⊆ C

x ∈ A A ⊆ B x ∈ B

B ⊆ C x ∈ C,
∀x ∈ U (x ∈ A ⇒ x ∈ C).

A ⊆ C

∴ A ⊆ B B ⊆ C A ⊆ C

4.2.7

x ∈ A ⇔ {x} ⊆ A x ∈ U

p ⇔ q p ⇒ q p ⇐ q

p ⇒ q

q ⇒ p

⇒ ⇐

⇒ x ∈ A ⇒ {x} ⊆ A

⇐ {x} ⊆ A ⇒ x ∈ A

(⇒) x ∈ A. … {x} ⊆ A

(⇐) {x} ⊆ A. … x ∈ A
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( ) Assume . The set  contains only one element , which is also an element of . Thus, every element of  is
also an element of . By definition of subset, .

( ) Assume . The definition of the subset asserts that every element of  is also an element of . In particular, 
 is an element of , so by definition of subset, it is also an element of . Thus, .

Definition - Proper subset

The set  is a proper subset of , denoted , if  is a subset of , and . Symbolically, 
. Equivalently,

See the Venn diagram in Figure .

 Figure : The definition of a proper subset.

Example 

It is clear that . We also have

Note the similarities between  and . Compare the last expression to

Here is another similarity between  and . For numbers,  and  together imply that . This is the transitive
property. In a similar fashion, for sets, if  and , then ; the transitive property holds for proper subsets.

hands-on exercise 
True or false: ? How about ?

Empty Set Theorems 

Theorem   is a Subset of Every Set

For any set , we have  and . In particular, .

Proof

Since every element of  also appears in , it follows immediately that . To show that , we need to verify the
implication

for any arbitrary . Since  is empty,  is always false; hence, the implication is always true. Consequently, 
for any set . In particular, when , we obtain .

⇒ x ∈ A {x} x A {x}
A {x} ⊆ A

⇐ {x} ⊆ A {x} A

x {x} A x ∈ A

A B A ⊂ B A B A ≠ B

A ⊂ B ⇔ (A ⊆ B) ∧ (A ≠ B)

A ⊂ B ⇔ (A ⊆ B) ∧ ∃x ∈ U (x ∈ B ∧ x ∉ A). (4.2.10)

4.2.4

4.2.4

4.2.8

[0, 5] ⊂ R

N ⊂ Z ⊂ Q ⊂ R. (4.2.11)

⊂ <

x < y < z < w. (4.2.12)

⊂ < x < y y < z x < z

A ⊂ B B ⊂ C A ⊂ C

4.2.3

(3, 4) ⊂ [3, 4] (3, 4) ⊂ (3, 4]

4.2.2 ∅

A ∅ ⊆ A A ⊆ A ∅ ⊆ ∅

A A A ⊆ A ∅ ⊆ A

x ∈ ∅ ⇒ x ∈ A (4.2.13)

x ∈ U ∅ x ∈ ∅ ∅ ⊆ A

A A = ∅ ∅ ⊆ ∅
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Theorem  The  is Unique

An empty set is defined as a set with no elements.  We want to show there is just one empty set; only one set that has no
elements. Then we can refer to it as "the" empty set.

Proof

Suppose  and   are empty sets, that is, they each have no elements.  From Theorem 4.2.2, since  has no elements, 
  By the same reasoning,  Now from the definition of equality,  Thus there is just one empty

set.

 

Example 

Determine the truth values of these expressions.

(a)  & (b)  & (c) 

Answer

(a) By definition, an empty set contains no element. Consequently, the statement  is false.

(b) A subset relation only exists between two sets. To the left of the symbol , we have only a number, which is not a set.
Hence, the statement is false. In fact, this expression is syntactically incorrect.

(c) The set  contains one element, which happens to be an empty set. Compare this to an empty box inside another box.
The outer box is described by the pair of set brackets , and the (empty) box inside is . It follows that  is a true
statement.

hands-on exercise 
Determine the truth values of these expressions.

(a)  & (b)  & (c) 

Definition-Power Set

The set of all subsets of  is called the power set of , denoted    

Since a power set itself is a set, we need to use a pair of left and right curly braces (set brackets) to enclose all its elements. Its
elements are themselves sets, each of which requires its own pair of left and right curly braces. Consequently, we need at least two
levels of set brackets to describe a power set.

Example  Examples of Power Sets

Let  and . The subsets of  are , ,  and . Therefore,

In a similar manner, we find

We can write directly

without introducing letters to represent the sets involved.

 

hands-on exercise 

4.2.3 ∅

E1 E2 E1

⊆ .E1 E2 ⊆ .E2 E1 = .E2 E1

4.2.9

∅ ∈ ∅ 1 ⊆ {1} ∅ ∈ {∅}

∅ ∈ ∅

⊆

{∅}
{ … } ∅ ∅ ∈ {∅}

4.2.4

∅ ⊆ {∅} {1} ⊆ {1, {1, 2}} {1} ⊆ {{1}, {1, 2}}

A A P(A).

4.2.10

A = {1, 2} B = {1} A ∅ {1} {2} {1, 2}

P(A) = {∅, {1}, {2}, {1, 2}}. (4.2.14)

P(B) = {∅, {1}}. (4.2.15)

P({1, 2}) = {∅, {1}, {2}, {1, 2}}, and P({1}) = {∅, {1}} (4.2.16)

4.2.5
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Let us evaluate . To ensure that no subset is missed, we list these subsets according to their sizes. Since  is the
subset of any set,  is always an element in the power set. This is the subset of size 0. Next, list the singleton subsets (subsets
with only one element). Then the doubleton subsets, and so forth. Complete the following table.

Since  for any set , the power set  always contains  itself. As a result, the last subset in the list should be 
itself.

We are now ready to put them together to form the power set. All you need is to put all the subsets inside a pair of bigger curly
braces (a power set is itself a set; hence, it needs a pair of curly braces in its description). Put your final answer in the space
below.

Check to make sure that the left and right braces match perfectly.

Example 
Since  is a subset of , it belongs to . Nonetheless, it is improper to say . Can you explain why? What
should be the correct notation?

Answer

The power set  is the collection of all the subsets of . Thus, the elements in  are subsets of . One of these
subsets is the set  itself. Hence,  itself appears as an element in , and we write  to describe this
membership.

This is different from saying that . In order to have the subset relationship , every element in  must
also appear as an element in . The elements of  are sets (they are subsets of , and subsets are sets). An element
of  is not the same as a subset of . Therefore, although  is syntactically correct, its truth value is false.

hands-on exercise 
Explain the difference between  and . How many elements are there in  and ? Is it true that ?

Theorem    subsets for a set with  elements.

If  is an -element set, then  has  elements. In other words, an -element set has  distinct subsets.

Proof

How many subsets of  can we construct? To form a subset, we go through each of the  elements and ask ourselves if we
want to include this particular element or not. Since there are two choices (yes or no) for each of the  elements in , we
have found  subsets.

hands-on exercise 
How many elements are there in ? What are they?

hands-on exercise 

What is the cardinality of ? How about ? Describe .

hands-on exercise 

P({1, 2, 3, 4}) ∅
∅

size

0

1

2

3

4

subsets

∅

{1}, {2}, …

{1, 2}, {1, 3}, …

{1, 2, 3}, …

…

(4.2.17)

A ⊆ A A P(A) A A

4.2.11

A A P(A) A ⊆P(A)

P(A) A P(A) A

A A ℘(A) A ∈ ℘(A)

A ⊆P(A) A ⊆P(A) A

P(A) P(A) A

A A A ⊆P(A)

4.2.6

∅ {∅} ∅ {∅} P(∅) = {∅}

4.2.3 2n
n

A n P(A) 2n n 2n

A n

n A

=2 ⋅ 2 ⋅ ⋯ 2
  

 n  times

2n

4.2.7

P({α, β, γ})

4.2.8

∅ P(∅) P(∅)

4.2.9
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Is it correct to write ? How about ? Explain.

Example  Complicated Power Sets

When a set contains sets as elements, its power set could become rather complicated. Here are two examples. 

 Be sure you understand the notations used in these examples. In particular, examine the number of levels of set brackets used in
each example.

Summary and Review
A set  is a subset of another set  if and only if every element in  can be found in .
In symbols, .
Consequently, to show that , we have to start with an arbitrary element  in , and show that  also belongs to .
For sets  and , .
The definition of subset relationship implies that for any set , we always have  and .
The empty set is unique.
The power set of a set , denoted , contains all the subsets of .
If , then . Hence, an -element set has  subsets.
To construct , list the subsets of  according to their sizes. Be sure to use a pair of curly braces for each subset, and
enclose all of them within a pair of outer curly braces.

Exercises 

Exercise 
Determine which of the following statements are true and which are false.

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

Answer

All are true except (f) is false.

Exercise 

Determine which of the following statements are true and which are false.

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

Exercise 
True or false: ? Explain.

Answer

|P(A)| = 2|A| |P(A)| = 2A

4.2.12

P({{a}, {1}})

P({∅, {1}})

=

=

{∅,{{a}},{{1}},{{a}, {1}}},

{∅, {∅},{{1}},{∅, {1}}}.

S T S T

S ⊆ T ⇔ ∀x ∈ U (x ∈ S ⇒ x ∈ T )
S ⊆ T x S x T

S T S = T ⇔ (S ⊆ T ) ∧ (T ⊆ S)
S ∅ ⊆ S S ⊆ S

S ℘(S) S

|S| = n |P(S)| = 2n n 2n

P(S) S

4.2.1

{1, 2, 3} ⊆ {0, 1, 2, 3, 4}
{1, 2, 3} ⊆ N
{1, 2} ⊂ [1, 2]
[2, 4] ⊆ (0, 6)
[2, 4) ⊂ [2, 4]
[2, 4) ⊆ (2, 4]

4.2.2

a ⊆ {a}
{a} ⊆ {a, b}
∅ ⊆ ∅
∅ ⊆ {∅}
∅ ⊂ {∅}
{a} ⊆P({{a}, {b}})

4.2.3

5N ⊆ N
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True.   contains all the integers that are multiples of 5, and each of these is an integer.

Exercise 
True or false: ? Explain.

Exercise 
Determine which of the following statements are true, and which are false. Explain!

(a) 
(b) 
(c)  
 

Answer

(a) False, because the set  cannot be found in  as an element.

(b) False, because , the sole element in , cannot be found in  as an element.

(c) False. For , the set  must be a subset of . This means  must belong to ,
which is not true.

Exercise 

Determine whether the following statements are true or false:

(a) The empty set  is a subset of .
(b) If , then  is a subset of .
(c) .

Exercise 

Find the power set of the following sets.

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

Answer

(e)  .

Exercise 
Evaluate the following sets.

(a) 
(b) 
(c) 

Exercise 

Determine which of the following statements are true, and which are false. 

(a) 

(b) 

5N

4.2.4

N ⊆ 6N

4.2.5

{a} ∈ {a, b, c}
{a} ⊆ {{a}, b, c}
{a} ∈ P({{a}, b, c})

{a} {a, b, c}

a {a} {{a}, b, c}

{a} ∈ P({{a}, b, c}) {a} {{a}, b, c}} a {{a}, b, c}

4.2.6

∅ {1, 2, 3}
A = {1, 2, 3} {1} P(A)

∅ ∈ {1, 2, 3}

4.2.7

{a, b}
{4, 7}
{x, y, z, w}
{{a}}
{a, {b}}
{{x}, {y}}

{∅, {a}, {{b}}, {a, {b}}}

4.2.8

P({∅})
P(P({a, b}))
P(P(P(∅)))

4.2.9

{a} ⊆ {a, b, c}

{a} ⊆ {{a, b}, c}
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(c) 

(d) 

(e) 

Answer

(a) True (b) False (c) False (d) True (e) False

 

Exercise 

Let  and 

(a) Prove 

(b) Explain with a counter example why 

Exercise 
Determine which of the following statements are true, and which are false. 

(a) 

(b) 

(c) 

(d) 

Answer

(a) False (b) True (c) False (d) True

Exercise 
Let  and 

Prove 

Exercise 
We have learned that  for any set . 

Which of these is correct: (a)  or  (b) ?

Answer

(a) is correct  (b) is incorrect

 

This page titled 4.2: Subsets and Power Sets is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris
Kwong (OpenSUNY) .

{a} ∈ {a, b, c}

{a} ∈ P({a, b, c})

∅ ∈ {a, b, c}

4.2.10

P = {n ∈ Z ∣ n = 3k for some integer k} Q = {m ∈ Z ∣ m = 6j−15 for some integer j}.

Q ⊆ P .

P ⊈ Q.

4.2.11

∈ QZ+

⊆ RQ+

Q ⊆ Z

= NZ+

4.2.12

A = {n ∈ Z ∣ n = 8k −3 for some integer k} B = {m ∈ Z ∣ m = 8j+5 for some integer j}.

A = B.

4.2.13

A ⊆ A A

A ∈ P(A) A ⊆P(A)
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4.3: Unions and Intersections
We can form a new set from existing sets by carrying out a set operation.

Definition: 
Given two sets  and , define their intersection to be the set

Loosely speaking,  contains elements common to both  and .

Definition: 
The union of  and  is defined as

Thus  is, as the name suggests, the set combining all the elements from  and .

INTERSECTION
        UNION

 

Definition: 
The set difference , sometimes written as , is defined as

In words,  contains elements that can only be found in  but not in . Operationally speaking,  is the set obtained
from  by removing the elements that also belong to . 

Definition: 

The complement of , denoted by ,  or , is defined as 

A∩B

A B

A ∩ B = {x ∈ U ∣ x ∈ A ∧ x ∈ B} (4.3.1)

A ∩ B A B

A∪B

A B

A ∪ B = {x ∈ U ∣ x ∈ A ∨ x ∈ B} (4.3.2)

A ∪ B A B

A−B

A −B A ∖ B

A −B = {x ∈ U ∣ x ∈ A ∧ x ∉ B} (4.3.3)

A −B A B A −B

A B

A
¯ ¯¯̄

A A
¯ ¯¯̄

A
′

A
c

= {x ∈ U ∣ x ∉ A}A
¯ ¯¯̄

(4.3.4)
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Definition: 
The symmetric difference   , is defined as

 

Definition: Disjoint

Two sets are disjoint if their intersection is empty.

For example, consider  and .

 so  and  are disjoint.

Remark

We would like to remind the readers that it is not uncommon among authors to adopt different notations for the same mathematical
concept. Likewise, the same notation could mean something different in another textbook or even another branch of mathematics.
It is important to develop the habit of examining the context and making sure that you understand the meaning of the notations
when you start reading a mathematical exposition.

Example 

Let , , and . Find , , , , , , and .

Solution

We have

A△ B

A △ B

A △ B = (A −B) ∪ (B −A) (4.3.5)

S = {1, 3, 5} T = {2, 8, 10, 14}

S ∩ T = ∅ S T

4.3.1

U = {1, 2, 3, 4, 5} A = {1, 2, 3} B = {3, 4} A ∩ B A ∪ B A −B B −A A △ B A
¯ ¯¯̄

B
¯ ¯¯̄
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We also find , and .

hands-on exercise 

Let ,

Find , , , , , and .

hands-on exercise 
If , what would be ?

Example 

The set of integers can be written as the

Can we replace  with 0? Explain.

hands-on exercise 
Explain why the following expressions are syntactically incorrect.

.

How would you fix the errors in these expressions?

Example 

For any set , what are , , ,  and ?

Answer

It is clear that

From the definition of set difference, we find . Finally, .

Example 

Write, in interval notation,  and .

Answer

The answers are

They are obtained by comparing the location of the two intervals on the real number line.

A ∩ B

A ∪ B

A −B

B △ A

=

=
=

=

{3},

{1, 2, 3, 4},
{1, 2},

{1, 2, 4}.

= {4, 5}A
¯ ¯¯̄

= {1, 2, 5}B
¯ ¯¯̄

4.3.1

U = {John, Mary, Dave, Lucy, Peter, Larry}

A = {John, Mary, Dave}, and B = {John, Larry, Lucy}. (4.3.6)

A ∩ B A ∪ B A −B B −A A
¯ ¯¯̄

B
¯ ¯¯̄

4.3.2

A ⊆ B A −B

4.3.2

Z = {−1, −2, −3, …} ∪ {0} ∪ {1, 2, 3, …}. (4.3.7)

{0}

4.3.3

Z = {−1, −2, −3, …} ∪ 0 ∪ {1, 2, 3, …}
Z = … , −3, −2, −1 ∪ 0 ∪ 1, 2, 3, …
Z = … , −3, −2, −1 + 0 + 1, 2, 3, …
Z = ∪ 0 ∪Z

−
Z

+

4.3.3

A A ∩ ∅ A ∪ ∅ A −∅ ∅ −A A
¯ ¯¯̄̄¯¯̄

A ∩ ∅ = ∅, A ∪ ∅ = A, and A −∅ = A. (4.3.8)

∅ −A = ∅ = AA
¯ ¯¯̄̄¯¯̄

4.3.4

[5, 8) ∪ (6, 9] [5, 8) ∩ (6, 9]

[5, 8) ∪ (6, 9] = [5, 9], and [5, 8) ∩ (6, 9] = (6, 8). (4.3.9)
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hands-on exercise 
Write, in interval notation,  and .

Example 
We are now able to describe the following set

in the interval notation. It can be written as either  or, using complement, . Consequently, saying 
 is the same as saying , or equivalently, .

To Prove a Set is Empty

To prove a set is empty, use a proof by contradiction with these steps:

(1) Assume not.  That, is assume  is not empty.

(2) This means there is an element is  by definition of the empty set. 

(3) Let .

(4) Come to a contradition and wrap up the proof.

 

Example 

Prove: 

Proof: Assume not. That is, assume for some set    
By definition of the empty set, this means there is an element in 

Let 

 by definition of intersection.

This says , but the empty set has no elements!  This is a contradiction!

Thus, our assumption is false, and the original statement is true.

 

Set Properties
Notes:

(a) These properties should make sense to you and you should be able to prove them.  However, you are not to use them as
reasons in a proof.  Rather your justifications for steps in a proof need to come directly from definitions. The exception to this is
DeMorgan's Laws which you may reference as a reason in a proof.

(b) You do not need to memorize these properties or their names.  However, you should know the meanings of: commutative,
associative and distributive.  Also, you should know DeMorgan's Laws by name and substance.

The following properties hold for any sets , , and  in a universal set .

1. Commutative properties: 

2. Associative properties: 

3. Distributive laws: 

4.3.4

(0, 3) ∪ [−1, 2) (0, 3) ∩ [−1, 2)

4.3.5

{x ∈ R ∣ (x < 5) ∨ (x > 7)} (4.3.10)

(−∞, 5) ∪ (7, ∞) R −[5, 7 ]
x ∉ [5, 7 ] x ∈ (−∞, 5) ∪ (7, ∞) x ∈ R −[5, 7 ]

…

…

x ∈ …

4.3.6

∀A ∈ U, A ∩ ∅ = ∅.

A, A ∩ ∅ ≠ ∅.
A ∩ ∅.

x ∈ A ∩ ∅.

x ∈ A ∧ x ∈ ∅

x ∈ ∅

∀A ∈ U, A ∩ ∅ = ∅.

A B C U

A ∪ B = B ∪ A,

A ∩ B = B ∩ A.
(A ∪ B) ∪ C = A ∪ (B ∪ C),

(A ∩ B) ∩ C = A ∩ (B ∩ C).
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
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4. Idempotent laws: 

5. De Morgan’s laws: 

6. Laws of the excluded middle, or inverse laws: 

As an illustration, we shall prove the distributive law

 

We need to show that

Here is a proof of the distributive law .

Proof 
 

First we will show  
Let . 

 by definition of union. 
 
Case 1:  
Since ,   by definition of union and  by definition of union. 

, by definition of intersection. 
 
Case 2:  

by definition of intersection. 
 by definition of union and  by definition of union. 

, by definition of intersection. 
 
We have shown if  then . 
So, by definition of subset,  
 
Next, we will show  
Let  

 by definition of intersection. 
Case 1:  
Since  we have  by definition of union. 
 
Case 2:  
Since   by definition of union, so  must be an element of  
Furthermore, since   by definition of union, so  must be an element of  
We have  thus  . by definition of intersection. 
And so,  . by definition of union. 
 
In both cases, if  then  
So, by definition of subset,  
 
It follows that , by definition of equality of sets.

hands-on exercise 

A ∪ A = A,

A ∩ A = A.

 (a)  = ∩ ,A ∪ B
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

A
¯ ¯¯̄

B
¯ ¯¯̄

 (b)  = ∪ .A ∩ B
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

A
¯ ¯¯̄

B
¯ ¯¯̄

A ∪ = U,A
¯ ¯¯̄

A ∩ = ∅.A
¯ ¯¯̄

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). (4.3.11)

A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C), and (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C). (4.3.12)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).
x ∈ A ∪ (B ∩ C)

x ∈ A ∨ x ∈ B ∩ C

x ∈ A.
x ∈ A x ∈ A ∪ B, x ∈ A ∪ C,

∴ x ∈ (A ∪ B) ∩ (A ∪ C)

x ∈ B ∩ C.
x ∈ B ∧ x ∈ C,
x ∈ A ∪ B, x ∈ A ∪ C,
∴ x ∈ (A ∪ B) ∩ (A ∪ C)

x ∈ A ∪ (B ∩ C) x ∈ (A ∪ B) ∩ (A ∪ C)
A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).

(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).
x ∈ (A ∪ B) ∩ (A ∪ C).

x ∈ (A ∪ B) ∧ x ∈ (A ∪ C)
x ∈ A.

x ∈ A, x ∈ A ∪ (B ∩ C)

x ∉ A.
x ∈ (A ∪ B), x ∈ A ∨ x ∈ B x B.

x ∈ (A ∪ C), x ∈ A ∨ x ∈ C x C.
x ∈ B ∧ x ∈ C, x ∈ B ∩ C

x ∈ A ∪ (B ∩ C)

x ∈ (A ∪ B) ∩ (A ∪ C), x ∈ A ∪ (B ∩ C. )
(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C. )

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

4.3.5
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Prove that .

hands-on exercise 

Prove that if  and , then .

Discussion

Let us start with a draft. The statement we want to prove takes the form of

Hence, what do we assume and what do we want to prove?

Assume:

Want to Prove:

Did you put down we assume  and , and we want to prove ? Great! Now, what does it mean by 
? How about ? What is the meaning of ?

 means: For any , if , then  as well.

 means:

 means:

How can you use the first two pieces of information to obtain what we need to establish?

Now it is time to put everything together, and polish it into a final version. Remember three things:

the outline of the proof,
the reason in each step of the main argument, and
the introduction and the conclusion.

Put the complete proof in the space below.

Here are two results involving complements.

Theorem 

For any two sets  and , we have .

Theorem 
For any sets ,  and ,  

(a) 

(b) 

Summary and Review
Memorize the definitions of intersection, union, and set difference. We rely on them to prove or derive new results.
The intersection of two sets  and , denoted , is the set of elements common to both  and . In symbols, 

.
The union of two sets  and , denoted , is the set that combines all the elements in  and . In symbols, 

.
The set difference between two sets  and , denoted by , is the set of elements that can only be found in  but not in 

. In symbols, it means .
The symmetric difference between two sets  and , denoted by , is the set of elements that can be found in  and in 

, but not in both  and .  In symbols, it means .

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

4.3.6

A ⊆ B A ⊆ C A ⊆ B ∩ C

(A ⊆ B) ∧ (A ⊆ C) ⇒ A ⊆ B ∩ C. (4.3.13)

A ⊆ B A ⊆ C A ⊆ B ∩ C

A ⊆ B A ⊆ C A ⊆ B ∩ C

A ⊆ B x ∈ U x ∈ A x ∈ B

A ⊆ C

A ⊆ B ∩ C

4.3.1

A B A ⊆ B ⇔ ⊆B
¯ ¯¯̄

A
¯ ¯¯̄

4.3.2

A B C

A −(B ∪ C) = (A −B) ∩ (A −C)

A −(B ∩ C) = (A −B) ∪ (A −C)

A B A ∩ B A B

∀x ∈ U [x ∈ A ∩ B ⇔ (x ∈ A ∧ x ∈ B)]
A B A ∪ B A B

∀x ∈ U [x ∈ A ∪ B ⇔ (x ∈ A ∨ x ∈ B)]
A B A −B A

B ∀x ∈ U [x ∈ A −B ⇔ (x ∈ A ∧ x ∉ B)]
A B A △ B A

B A B ∀x ∈ U [x ∈ A △ B ⇔ x ∈ A −B ∨ x ∈ B −A)]
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Exercises 

Exercise 
Write each of the following sets by listing its elements explicitly.

(a) 

(b) 

(c) 

(d) 

(e) 

(f)  
 

Answer

(a) 

(b) 

(c) 

Exercise 
Assume , and let

 Describe the following sets by listing their elements explicitly.

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Exercise 
Are these statements true or false?

(a) 

(b) 

Answer

(a) false (b) false

Exercise 

4.3.1

[−4, 4] ∩ Z

(−4, 4] ∩ Z

(−4, ∞) ∩ Z

(−∞, 4] ∩ N

(−4, ∞) ∩ Z−

(4, 5) ∩ Z

{−4, −3, −2, −1, 0, 1, 2, 3, 4}

{−3, −2, −1, 0, 1, 2, 3, 4}

{−3, −2, −1, 0, 1, 2, 3, …}

4.3.2

U = Z

A = {… , −6, −4, −2, 0, 2, 4, 6, …} = 2Z,

B = {… , −9, −6, −3, 0, 3, 6, 9, …} = 3Z,

C = {… , −12, −8, −4, 0, 4, 8, 12, …} = 4Z.

A ∩ B

C −A

A −B

A ∩ B
¯ ¯¯̄

B −A

B ∪ C

(A ∪ B) ∩ C

(A ∪ B) −C

4.3.3

[1, 2] ∩ [2, 3] = ∅

[1, 2) ∪ (2, 3] = [2, 3]

4.3.4
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Let the universal set  be the set of people who voted in the 2012 U.S. presidential election. Define the subsets , , and  of
 as follows:

Express the following subsets of  in terms of , , and .

(a) People who did not vote for Barack Obama.

(b) Union members who voted for Barack Obama.

(c) Registered Democrats who voted for Barack Obama but did not belong to a union.

(d) Union members who either were not registered as Democrats or voted for Barack Obama.

(e) People who voted for Barack Obama but were not registered as Democrats and were not union members.

(f) People who were either registered as Democrats and were union members, or did not vote for Barack Obama.

Exercise 

An insurance company classifies its set  of policy holders by the following sets:

Describe each of the following subsets of  in terms of , , , , and .

(a) Male policy holders over 21 years old.

(b) Policy holders who are either female or drive cars more than 5 years old.

(c) Female policy holders over 21 years old who drive subcompact cars.

(d) Male policy holders who are either married or over 21 years old and do not drive subcompact cars.

Answer

(a)  (b) 

Exercise 

Let  and  be arbitrary sets. Complete the following statements.

(a)         ___________________

(b)         ___________________

(c)            ___________________

(d)   ___________________  ___________________ 

(e)   ___________________  ___________________  

(f)            ___________________

Exercise 
Give examples of sets  and  such that  and .

Answer

U D B W

U

D

B

W

=

=

=

{x ∈ U ∣ x registered as a Democrat},

{x ∈ U ∣ x voted for Barack Obama},

{x ∈ U ∣ x belonged to a union}.

U D B W

4.3.5

U

A

B

C

D

E

=

=

=

=

=

{x ∣ x drives a subcompact car},

{x ∣ x drives a car older than 5 years},

{x ∣ x is married},

{x ∣ x is over 21 years old},

{x ∣ x is a male}.

U A B C D E

E ∩ D ∪ BE
¯ ¯¯̄

4.3.6

A B

A ⊆ B ⇔ A ∩ B =

A ⊆ B ⇔ A ∪ B =

A ⊆ B ⇔ A −B =

A ⊂ B ⇔ (A −B = ∧ B −A ≠ )

A ⊂ B ⇔ (A ∩ B = ∧ A ∩ B ≠ )

A −B = B −A ⇔

4.3.7

A B A ∈ B A ⊂ B
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For example, take , and .

Exercise 

(a) Prove De Morgan’s law, (a) .

(b) Prove De Morgan’s law, (b) .

Exercise 
Let , , and  be any three sets. Prove that if  and , then .

Answer

Assume  and , we want to show that .

Let . we want to show that  as well.

Since , then either  or  by definition of union.

Case 1: If , then  implies that  by definition of subset.

Case 2: If , then  implies that  by definition of subset.

 

In both cases, we find . So, if  then .

This proves that  by definition of subset.

 For any sets , , and  if  and , then .

Exercise 
Prove Theorem 4.3.1

Exercise 
(a) Prove Theorem 4.3.2 part (a)

(b) Prove Theorem 4.3.2 part (b)

Exercise 

Let , , and  be any three sets. Prove that

(a) 

(b) 

(c) 

(d) 

Exercise 
Comment on the following statements. Are they syntactically correct?

(a) 

(b) 

Answer

(a) The notation  is used to connect two sets, but “ ” and “ ” are both logical statements. We should also use 
instead of . The statement should have been written as “ .”

(b) If we read it aloud, it sounds perfect:

A = {x} B = {{x}, x}

4.3.8

4.3.9

A B C A ⊆ C B ⊆ C A ∪ B ⊆ C

A ⊆ C B ⊆ C A ∪ B ⊆ C

x ∈ A ∪ B x ∈ C

x ∈ A ∪ B x ∈ A x ∈ B

x ∈ A A ⊆ C x ∈ C

x ∈ B B ⊆ C x ∈ C

x ∈ C x ∈ A ∪ B x ∈ C

A ∪ B ⊆ C

∴ A B C A ⊆ C B ⊆ C A ∪ B ⊆ C

4.3.10

4.3.11

4.3.12

A B C

A −B = A ∩ B
¯ ¯¯̄

A = (A −B) ∪ (A ∩ B)

A −(B −C) = A ∩ ( ∪ C)B
¯ ¯¯̄

(A −B) −C = A −(B ∪ C)

4.3.13

x ∈ A ∩ x ∈ B ≡ x ∈ A ∩ B

x ∈ A ∧ B ⇒ x ∈ A ∩ B

∩ x ∈ A x ∈ B ⇔
≡ x ∈ A ∧ x ∈ B ⇔ x ∈ A ∩ B
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The trouble is, every notation has its own meaning and specific usage. In this case,  is not exactly a replacement for the
English word “and.” Instead, it is the notation for joining two logical statements to form a conjunction. Before , we have “

,” which is a logical statement. But, after , we have “ ,” which is a set, and not a logical statement. It should be
written as “ .”

Exercise 

Prove or disprove each of the following statements about arbitrary sets  and . If you think a statement is true, prove it; if you
think it is false, provide a counterexample.

(a) 

(b) 

(c) 

Remark

To show that two sets  and  are equal, we usually want to prove that  and .  For the subset relationship, we
start with let . In this problem, the element  is actually a set. Since we usually use uppercase letters to denote sets,
for (a) we should start the proof of the subset relationship  “Let ,”  using an uppercase letter to emphasize
the elements of  are sets. These remarks also apply to (b) and (c).

Exercise 
Let , , ,  and . Find

(a)                    (b)                     (c)    

(d)                   (e)               (f)                    

(g)                 (h)                   (i)                         

(j)                   (k)                       (l)    

(m)                   (n)                       (o) .                 

(p)         (q)             (r) 

(s) Which pairs of sets are disjoint?

Answer    

(a)             (b)        (c)                (d)      

Exercise 

Prove:

If  then 

This page titled 4.3: Unions and Intersections is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris
Kwong (OpenSUNY) .

If x belongs to A and B, then x belongs to A ∩ B. (4.3.14)

∧
∧

x ∈ A ∧ B

x ∈ A ∧ x ∈ B ⇒ x ∈ A ∩ B

4.3.14

A B

P(A ∩ B) =P(A) ∩P(B)

P(A ∪ B) =P(A) ∪P(B)

P(A −B) =P(A) −P(B)

U V U ⊆ V V ⊆ U

x ∈ U x

S ∈ P(A ∩ B)
P(A ∩ B)

4.3.15

U = {1, 2, 3, 4, 5, 6, 7, 8} A = {2, 4, 6, 8} B = {3, 5} C = {1, 2, 3, 4} D = {6, 8}

A ∩ C A ∩ B ∅ ∪ B

∅ ∩ B A −(B ∪ C) C −B

A △ C A ∪U A ∩ D

A ∪ D B ∩ D B △ C

A ∩U A
¯ ¯¯̄

B
¯ ¯¯̄

D ∪ (B ∩ C) A ∪ C
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

∪A
¯ ¯¯̄

C
¯ ¯¯̄

{2, 4} ∅ B ∅

4.3.16

A ⊆ B A −B = ∅.
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4.4: Cartesian Products
Another way to obtain a new set from two given sets  and  is to form ordered pairs.

Definition: Ordered Pair
An ordered pair  consists of two values  and . Their order of appearance is important, so we call them first and second
elements respectively. Consequently,  unless . In general,  if and only if  and .

Definition: Cartesian Product
The Cartesian product of  and  is the set

 

Thus,  (read as “  cross ”) contains all the ordered pairs in which the first elements are selected from , and the second
elements are selected from .

Example 
Let  and . Determine  and .

Solution

We find

In general, .

Example 

Determine  and :

 and .

 and .

Solution

(a) We find

(b) The answers are , and .

hands-on exercise 
Let  and . Find , , and .

Example 
Determine . Be sure to use correct notation.

Solution

A B

(x, y) x y

(a, b) ≠ (b, a) a = b (a, b) = (c, d) a = c b = d

A B

A×B = {(a, b) ∣ a ∈ A∧ b ∈ B} (4.4.1)

A×B A B A

B

4.4.1

A = {John, Jim, Dave} B = {Mary, Lucy} A×B B×A

A×B = {(John, Mary), (John, Lucy), (Jim, Mary), (Jim, Lucy), (Dave, Mary), (Dave, Lucy)},

B×A = {(Mary, John), (Mary, Jim), (Mary, Dave), (Lucy, John), (Lucy, Jim), (Lucy, Dave)}.
(4.4.2)

A×B ≠ B×A

4.4.2

A×B A×A

A = {1, 2} B = {2, 5, 6}

A = {5} B = {0, 7}

A×B

A×A

=

=

{(1, 2), (1, 5), (1, 6), (2, 2), (2, 5), (2, 6)},

{(1, 1), (1, 2), (2, 1), (2, 2)}.

A×B = {(5, 0), (5, 7)} A×A = {(5, 5)}

4.4.1

A = {a, b, c, d} B = {r, s, t} A×B B×A B×B

4.4.3

℘({1, 2}) ×{3, 7}

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/23275?pdf
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/4%3A_Sets/4.4%3A_Cartesian_Products


4.4.2 https://math.libretexts.org/@go/page/23275

For a complicated problem, divide it into smaller tasks and solve each one separately. Then assemble them to form the final
answer. In this problem, we first evaluate

This leads to

Check to make sure that we have matching left and right parentheses, and matching left and right curly braces.

hands-on exercise 

Find .

Example 
How could we describe the contents of the Cartesian product ? Since  is an infinite set, it is impossible to list
all the ordered pairs. We need to use the set-builder notation:

We can also write .

hands-on exercise 
Describe, using the set-builder notation, the Cartesian product .

Cartesian products can be extended to more than two sets. Instead of ordered pairs, we need ordered -tuples. The -fold
Cartesian product of  sets  is the set

In particular, when  for all , we abbreviate the Cartesian product as .

Example 

The -dimensional space is denoted . It is the -fold Cartesian product of . In special cases,  is the -plane, and  is
the -space.

Example 

If  then 

Solution

 

hands-on exercise 

Let , , and . Find .

Example 
From a technical standpoint,  is different from . Can you explain why? Can you discuss the difference,
if any, between  and ? For instance, give some specific examples of the elements in 
and  to illustrate their differences.

Solution

℘({1, 2}) = {∅, {1}, {2}, {1, 2}}. (4.4.3)

℘({1, 2}) ×{3, 7} =

=

{∅, {1}, {2}, {1, 2}}×{3, 7}

{(∅, 3), (∅, 7), ({1}, 3), ({1}, 7), ({2}, 3), ({2}, 7), ({1, 2}, 3), ({1, 2}, 7)}.

4.4.2

{a, b, c} ×℘({d})

4.4.4

[1, 3] ×{2, 4} [1, 3]

[1, 3] ×{2, 4} = {(x, y) ∣ 1 ≤ x ≤ 3, y = 2, 4}. (4.4.4)

[1, 3] ×{2, 4} = {(x, 2), (x, 4) ∣ 1 ≤ x ≤ 3}

4.4.3

[1, 3] ×[2, 4]

n n

n , , … ,A1 A2 An

× ×⋯ × = {( , , … , ) ∣ ∈  for each i, 1 ≤ i ≤ n}A1 A2 An a1 a2 an ai Ai (4.4.5)

= AAi i An

4.4.5

n R
n n R R

2 xy R
3

xyz

4.4.6

D = {1, 2} = D×D×D =D3

{(1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 1), (2, 1, 1), (2, 1, 2), (2, 2, 2), (2, 2, 1)}

4.4.5

A = {1, 2} B = {a, b} C = {r, s, t} A×B×C

4.4.7

(A×B) ×C A×B×C

(A×B) ×C A×(B×C) (A×B) ×C

A×(B×C)
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The elements of  are ordered pairs in which the first coordinates are themselves ordered pairs. A typical
element in  takes the form of

The elements in  are ordered triples of the form

Since their elements look different, it is clear that . Likewise, a typical element in 
 looks like

Therefore, , and .

Theorem 
For any sets , , and , we have

Remark

How would we show that the two sets  and  are equal? We need to show that

The complication in this problem is that both  and  are Cartesian products, so  takes on a special form, namely, that of an
ordered pair. Consider the first identity as an example

.

We need to show that

We prove this in two steps: first showing , then , which is equivalent to first showing , then . 

Proof 

Let . Then by definition of Cartesian Product,  , and .

The definition of union implies that  or . Thus far, we have found

 and , or
 and .

By definition of Cartesian Product, this is equivalent to

, or
.

Thus, . This proves that , by definition of subset.

Next, let . Then , or  by definition of union.

This means, by definition of Cartesian Product, 

 and , or
 and .

Both conditions require , so we can rewrite them as

, and

(A×B) ×C

(A×B) ×C

((a, b), c). (4.4.6)

A×B×C

(a, b, c). (4.4.7)

(A×B) ×C ≠ A×B×C

A×(B×C)

(a, (b, c)). (4.4.8)

(A×B) ×C ≠ A×(B×C) A×(B×C) ≠ A×B×C

4.4.1

A B C

A×(B∪C)

A×(B∩C)

A×(B−C)

=

=

=

(A×B) ∪ (A×C),

(A×B) ∩ (A×C),

(A×B) −(A×C).

S T

x ∈ S ⇔ x ∈ T . (4.4.9)

S T x

A×(B∪C) = (A×B) ∪ (A×C)

(u, v) ∈ A×(B∪C) ⇔ (u, v) ∈ (A×B) ∪ (A×C). (4.4.10)

⇒ ⇐ ⊆ ⊇

(u, v) ∈ A×(B∪C) u ∈ A v∈ B∪C

v∈ B v∈ C

u ∈ A v∈ B

u ∈ A v∈ C

(u, v) ∈ A×B

(u, v) ∈ A×C

(u, v) ∈ (A×B) ∪ (A×C) A×(B∪C) ⊆ (A×B) ∪ (A×C)

(u, v) ∈ (A×B) ∪ (A×C) (u, v) ∈ A×B (u, v) ∈ A×C

u ∈ A v∈ B

u ∈ A v∈ C

u ∈ A

u ∈ A

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/23275?pdf


4.4.4 https://math.libretexts.org/@go/page/23275

 or ;

which is equivalent to

, and
 by definition of union.

Thus, . We have proved that . Together with 
 that we have proved earlier, we conclude that ,

by definition of Set Equality.

Theorem 
If  and  are finite sets, with  and , then .

Proof

The elements of  are ordered pairs of the form , where , and . There are  choices of . For each
fixed , we can form the ordered pair  in  ways, because there are  choices for . Together, the ordered pairs 
can be formed in  ways.

The argument we used in the proof is called multiplication principle. We shall study it again in Chapter 7. In brief, it says that if a
job can be completed in several steps, then the number of ways to finish the job is the product of the number of ways to finish each
step.

Corallary 

If  are finite sets, then .

Corollary 
If  is a finite set with , then .

Proof

Let the elements of  be . The elements of  are subsets of . Each subset of  contains some elements
from . Let , so  is  n times.  is the set of all possible n-tupples (or strings) with 1s
and 0s.  Associate to each subset  of  an ordered -tuple  from  such that

The value of the th element in this ordered -tuple indicates whether the subset  contains the element . It is clear that the
subsets of  are in one-to-one correspondence with the -tuples. This means the power set  and the Cartesian product 

 have the same cardinality. Since there are  ordered -tuples, we conclude that there are  subsets as well.

This idea of one-to-one correspondence is a very important concept in mathematics. We shall study it again in Chapter 5.

Summary and Review
The Cartesian product of two sets  and , denoted , consists of ordered pairs of the form , where  comes from 

, and  comes from .
Since ordered pairs are involved,  usually is not equal to .
The notion of ordered pairs can be extended analogously to ordered -tuples, thereby yielding an -fold Cartesian product.
If  and  are finite sets, then .

Exercises 

Exercise 

Let ,  and . Evaluate the following Cartesian products.

v∈ B v∈ C

u ∈ A

v∈ B∪C

(u, v) ∈ A×(B∪C) (A×B) ∪ (A×C) ⊆ A×(B∪C)
A×(B∪C) ⊆ (A×B) ∪ (A×C) A×(B∪C) = (A×B) ∪ (A×C)

4.4.2

A B |A| = m |B| = n |A×B| = mn

A×B (a, b) a ∈ A b ∈ B m a

a (a, b) n n b (a, b)
mn

4.4.3

, , … ,A1 A2 An | × ×⋯ × | = | | ⋅ | | ⋯ | |A1 A2 An A1 A2 An

4.4.4

A |A| = n |P(A)| = 2n

A , , … ,a1 a2 an P(A) A A

A B = {0, 1} Bn B×B×B×B×… Bn

S A n ( , , … , )b1 b2 bn Bn

= {bi
0
1

 if  ∉ S, ai
 if  ∈ S. ai

(4.4.11)

i n S ai
A n P(A)

Bn 2n n 2n

A B A×B (a, b) a

A b B

A×B B×A

n n

A B |A×B| = |A| ⋅ |B|

4.4.1

X = {−2, 2} Y = {0, 4} Z = {−3, 0, 3}
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a. 
b. 
c.  

 

Solution

(a) 

(b) 

Exercise 
Consider the sets ,  and  defined in Problem 1. Evaluate the following Cartesian products.

a. 
b. 
c. 

Exercise 

Without listing all the elements of , where , , and  are defined in Problem 1, determine 
.

Solution

.

Exercise 
Let  and .

(a) 

(b) True or False?

(b1) 

(b2) 

(b3) 

(b4) 

(b5) 

(b6) 

(b7) 

(b8)  

Exercise 

Which of the following are elements of the Cartesian product ?  (see Example 4.4)

Note: assume ( , ) indicates ordered pairs, not intervals;  [  ,  ] does indicate a closed interval.

(a) (1,2)        (b) (4,4)       (c) (4,3)      (d) (2,4)    (e) (1.7, 4)    (f) [2,3]

(g) (0.7, 4)    (h) (2.7, 4)    (i) (3, 4)     (j) (1.5, 2)    (k) (3,3)       (l)  (2.981, 2)

Answer

(a) YES      (b) No   (c) No (d) YES  (e) YES   (f) No 
(g) No     (h)  YES    (i)  YES      (j)  YES    (k)  No   (l) YES

X×Y

X×Z

Z×Y ×Y

{(−2, 0), (−2, 4), (2, 0), (2, 4)}

{(−2, −3), (−2, 0), (−2, 3), (2, −3), (2, 0), (2, 3)}

4.4.2

X Y Z

X×Y ×Z

(X×Y ) ×Z

X×(Y ×Z)

4.4.3

X×Y ×X×Z X Y Z

|X×Y ×X×Z|

2 ⋅ 2 ⋅ 2 ⋅ 3 = 24

4.4.4

A = {1, 2, 3} B = {5, 6}

|A×B| =

(1, 6) ∈ A×B

(5, 2) ∈ A×B

A ⊆ A×B

{(1, 5), (2, 6)} ⊆ A×B

(3, 3) ∈ A×B

(2, 5) ∈ A×B

(1, 5) ⊆ A×B

{(5, 2), (6, 1), (6, 3)} ⊆ B×A

4.4.5

[1, 3] ×{2, 4}

(1, 2) ∈ [1, 3] ×{2, 4}
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Exercise 
Determine .

 

Exercise 
Consider the set . Evaluate the following Cartesian products.

a. 
b. 
c. 

Solution

(a) 

Exercise 
Let  and  be arbitrary nonempty sets.

a. Under what condition does ?
b. Under what condition is  empty?

Exercise 

Let , , and  be any three sets. Prove that

a. 
b. 

Exercise 
Let , , and  be any three sets. Prove that if , then .

This page titled 4.4: Cartesian Products is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

4.4.6

|P(P(P({1, 2})))|

4.4.7

X = {−2, 2}

X×P(X)
P(X) ×P(X)
P(X×X)

{(−2, ∅), (−2, {−2}), (−2, {2}), (−2, {−2, 2}), (2, ∅), (2, {−2}), (2, {2}), (2, {−2, 2})}

4.4.8

A B

A×B = B×A

(A×B) ∩ (B×A)

4.4.9

A B C

A×(B∩C) = (A×B) ∩ (A×C)
A×(B−C) = (A×B) −(A×C)

4.4.10

A B C A ⊆ B A×C ⊆ B×C
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4.5: Index Sets and Partitions

The notion of union can be extended to three sets:

It is obvious how to generalize it to the union of any number of sets. We use a notation that resembles the summation notation to
describe such a union:

We define

It looks messy! Here is a better alternative:

In a similar manner, , and we define

In plain English,  is the collection of all elements in the ’s, and  is the collection of all elements common to all ’s.

Example 
For , let . First, construct several  for comparison, because it may help us detect any specific

pattern. See Figure below.  It is clear that . Thus, , and .

hands-on Exercise 

Evaluate  and , where .

It is obvious that we can also extend the upper bound to infinity.

 and ⋃
i=1

n

Ai ⋂
i=1

n

Ai (4.5.3)

A∪B∪C = {x ∈ U ∣ (x ∈ A) ∨ (x ∈ B) ∨ (x ∈ C)}. (4.5.4)

= ∪ ∪ ⋯ ∪ .⋃
i=1

n

Ai A1 A2 An (4.5.5)

= {x ∈ U ∣ (x ∈ ) ∨ (x ∈ ) ∨ ⋯ ∨ (x ∈ )}.⋃
i=1

n

Ai A1 A2 An (4.5.6)

= {x ∈ U ∣ x ∈  for some i ∈ N,  where 1 ≤ i ≤ n}.⋃
i=1

n

Ai Ai (4.5.7)

= ∩ ∩ ⋯ ∩⋂
i=1

n

Ai A1 A2 An

= {x ∈ U ∣ x ∈  for all i ∈ N,  where 1 ≤ i ≤ n}⋂
i=1

n

Ai Ai (4.5.8)

⋃
i=1

n

Ai Ai ⋂
i=1

n

An Ai

4.5.1

i = 1, 2, 3, … = [−i, i]Ai Ai

⊂ ⊂ ⋯A1 A2 = [−n,n] =⋃
i=1

n

Ai An = [−1, 1] =⋂
i=1

n

Ai A1

4.5.1

⋃
i=1

n

Bi ⋂
i=1

n

Bi = [0, 2i) for i ∈ NBi

 and ⋃
i=1

∞

Ai ⋂
i=1

∞

Ai (4.5.9)
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In some situations, we may borrow the idea of partial sums from calculus. We first find the union or intersection of the first  sets,
then take the limit as  approaches infinity. Thus, if the limit is well-defined, the

Example 

Let . We have learned from the last example that  and . Hence,

Recall that we write  instead of  because  are not numbers, they are merely symbols representing
infinitely large values.

hands-on Exercise 

Evaluate  and , where .

Example 

Let . Determine  and .

Solution

Once again, we have . It is easy to check that

It follows that

Note that  because the endpoint 1 does not belong to any .

hands-on Exercise 

Let . Determine  and .

Example 

Let . Determine  and .

Solution

⋃
i=1

∞

Ai

⋂
i=1

∞

Ai

=

=

∪ ∪ ⋯ = {x ∈ U ∣ x ∈  for some i ∈ N},A1 A2 Ai

∩ ∩ ⋯ = {x ∈ U ∣ x ∈  for all i ∈ N}.A1 A2 Ai

n

n

= , and = .⋃
i=1

∞

Ai lim
n→∞

⋃
i=1

n

Ai ⋂
i=1

∞

Ai lim
n→∞

⋂
i=1

n

Ai (4.5.10)

4.5.2

= [−i, i]Ai = [−n,n]⋃
i=1

n

Ai = [−1, 1]⋂
i=1

n

Ai

= [−n,n] = (−∞, ∞), and = [−1, 1].⋃
i=1

∞

Ai lim
n→∞

⋂
i=1

∞

Ai (4.5.11)

(−∞, ∞) [−∞, ∞] ±∞

4.5.2

⋃
i=1

∞

Bi ⋂
i=1

∞

Bi = [0, 2i)Bi

4.5.3

= (0, 1 − ]Bi
1
2i

⋃
i=1

∞

Bi ⋂
i=1

∞

Bi

⊂ ⊂ ⋯B1 B2

= =(0, 1 − ] , and = =(0, ] .⋃
i=1

n

Bi Bn

1

2n
⋂
i=1

n

Bi B1
1

2
(4.5.12)

= (0, 1 − ] = (0, 1), and =(0, ] .⋃
i=1

∞

Bi lim
n→∞

1

2n
⋂
i=1

∞

Bi

1

2
(4.5.13)

(0, 1 − ] ≠ (0, 1]limn→∞
1

2n
Bi

4.5.3

= [0, 1 − ]Ci
1
i

⋃
i=1

∞

Ci ⋂
i=1

∞

Ci

4.5.4

= (1 − , 1 + )Di
1
i

1
i

⋃
i=1

∞

Di ⋂
i=1

∞

Di
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As the value of  increases, the value of  decreases. Hence, the left endpoint  increases, and the right endpoint 
decreases.

It is clear that . Thus, , and .

hands-on exercise 

Let . Determine  and .

hands-on Exercise 

For each positive integer , define . Determine  and .

The next two results are obvious.

Theorem 

If , then .

Theorem 

If , then .

Indexed Family of Sets
How could we describe the union ? Well, we can write

which means that union of , where  is even. Since the set of even positive integers is denoted by , another way to describe
the same union is

It means the union all , where  is taken out from the set . Accordingly,

i 1
i

1 − 1
i

1 + 1
i

i

1

[6pt]2

[6pt]3

[6pt]4

= (1 − , 1 + )Di
1
i

1
i

(0, 2)

( , )1
2

3
2

( , )2
3

4
3

( , )3
4

5
4

⊇ ⊇ ⊇ ⋯D1 D2 D3 = = (0, 2)⋃
i=1

∞

Di D1 = {1}⋂
i=1

∞

Di

4.5.4

= [−i, 1 + )Ei
1
i

⋃
i=1

∞

Ei ⋂
i=1

∞

Ei

4.5.5

i = {i, i+1, i+2, … , 3i}Fi ⋃
i=1

∞

Fi ⋂
i=1

∞

Fi

4.5.1

⊆ ⊆ ⊆ ⋯A1 A2 A3 =⋂
i=1

∞

Ai A1

4.5.2

⊇ ⊇ ⊇ ⋯A1 A2 A3 =⋃
i=1

∞

Ai A1

∪ ∪ ∪ ⋯A2 A4 A6

,⋃
i even

Ai (4.5.14)

Ai i 2N

.⋃
i∈2N

Ai (4.5.15)

Ai i 2N
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We can even go one step further, by allowing  to be taken from any set of integers, or any set of real numbers, or even any set of
objects. The only restriction is that  must exist, and its content must somehow depend on .

In general, given a nonempty set , if we could associate with each  a set , we define the indexed family of sets  as

We call  the index set, and define

Let us look at a few examples.

Example 
To describe the union

we first define the index set to be , which is the set of all the subscripts used in the union. Now the union
can be conveniently described as .

Example 

Consider five sets

Let , then

Likewise, .

hands-on Exercise 

Let . Evaluate  and , where s are defined in the last example.

hands-on Exercise 
An index set could be a set of any objects. For instance, the sets of numbers in the last example could be the favorite Lotto
numbers of five different students. We could index these sets according to the names of the students:

= , and = .⋃
i=0

∞

Ai ⋃
i∈N

Ai ⋂
i=0

∞

Ai ⋂
i∈N

Ai (4.5.16)

i

Ai i

I i ∈ I Ai A

A = { ∣ i ∈ I}.Ai (4.5.17)

I

⋃
i∈I

Ai

⋂
i∈I

Ai

=

=

{x ∣ x ∈  for some i ∈ I},Ai

{x ∣ x ∈  for all i ∈ I}.Ai

4.5.5

∪ ∪ ∪ ∪ ,A1 A3 A7 A11 A23 (4.5.18)

I = {1, 3, 7, 11, 23}

⋃
i∈I

Ai

4.5.6

A1

A2

A3

A4

A5

=

=

=

=

=

{1, 4, 23},

{7, 11, 23},

{3, 6, 9},

{5, 17, 22},

{3, 6, 23}.

I = {2, 5}

= ∪ = {7, 11, 23} ∪ {3, 6, 23} = {3, 6, 7, 11, 23}.⋃
i∈I

Ai A2 A5 (4.5.19)

= ∩ = {7, 11, 23} ∩ {3, 6, 23} = {23}⋂
i∈I

Ai A2 A5

4.5.6

J = {1, 4, 5} ⋃
i∈J

Ai ⋂
i∈J

Ai Ai

4.5.7

AJohn

AMary

AJoe

APete

ALucy

=

=

=

=

=

{1, 4, 23},

{7, 11, 23},

{3, 6, 9},

{5, 17, 22},

{3, 6, 23}.
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If , what is ? How would you interpret its physical meaning?

example 

Let , and define

for each . Then

and

We leave it as an exercise to verify these unions and intersections.

hands-on Exercise 

Verify the intersection and union in the last example.

hands-onExercise 

If  represents a set of students, and  represents the set of friends of student , interpret the meaning of  and .

We close this section with yet another generalization of De Morgan’s laws.

Theorem  Extended De Morgan's laws
For any nonempty index set , we have

Proof 1

Let , then

This means  for every . Hence,  for each . Consequently,

This proves that .

Next, let . Then  for each . This means  for each . Then

Thus, , proving that . We proved earlier that . Therefore, the two sets must be

equal. 

I = {Mary, Joe, Lucy} ⋃i∈I

4.5.7

I = {x ∣ x is a living human being }

Bi

Ai

=

=

{x ∈ I ∣ x is a child of i},

{i} ∪Bi

i ∈ I

= ∅, = I, = ∅,⋂
i∈I

Ai ⋃
i∈I

Ai ⋂
i∈I

Bi (4.5.20)

= I −{x ∣ x's parents are both deceased }.⋃
i∈I

Bi (4.5.21)

4.5.8

4.5.9

I Ai i ⋃
i∈I

Ai ⋂i∈I Ai

4.5.3

I

= ,  and  = .⋃
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⋂
i∈I

Ai
¯ ¯¯̄¯ ⋂

i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⋃
i∈I

Ai
¯ ¯¯̄¯

(4.5.22)

x ∈⋃
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄

x ∉ = {x ∣ x ∈  for some i ∈ I}.⋃
i∈I

Ai Ai (4.5.23)

x ∉ Ai i ∈ I x ∈ Ai
¯ ¯¯̄¯

i ∈ I

x ∈ .⋂
i∈I

Ai
¯ ¯¯̄¯

(4.5.24)

⊆⋃
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⋂i∈I Ai

¯ ¯¯̄¯

x ∈⋂
i∈I

Ai
¯ ¯¯̄¯

x ∈ Ai
¯ ¯¯̄¯

i ∈ I x ∉ Ai i ∈ I

x ∉ {x ∣ x ∈  for some i ∈ I} = .Ai ⋃
i∈I

Ai (4.5.25)

x ∈⋃
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⊆⋂

i∈I

Ai
¯ ¯¯̄¯ ⋃

i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⊆⋃

i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⋂
i∈I

Ai
¯ ¯¯̄¯
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The proof of  proceeds in a similar manner, and is left as an exercise.

 

Proof 2

We shall prove . We leave out the explanations for you to fill in:

The proof of  is left as an exercise.

Partitions of Sets

Definition: Mutually Disjoint

Sets  are mutually disjoint (or pairwise disjoint) if and only if no two sets with distinct subscripts have any
elements in common.

Specifically, for all 

Definition: Partition

A finite or infinite collection of non-empty sets   is a partition of set  if and only if

(1)  is the union of all the 

(2) The sets  are mutually disjoint.

Example 

Let   Which of the following collections of sets are a partition of set ?

(a)   with    

(b)   with  

(c)   with   

(d)   with   

(e)   with   

(f)   with   

Solution

(a), (c) & (d)

=⋂
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⋃
i∈I

Ai
¯ ¯¯̄¯

=⋃
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⋂
i∈I

Ai
¯ ¯¯̄¯

x ∈⋃
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⇔

⇔
⇔

⇔

⇔

x ∈⋃
i∈I

Ai

¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

x ∈  for some iAi
¯ ¯¯̄¯̄¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄¯̄ ¯̄ ¯̄ ¯̄¯̄ ¯̄ ¯̄ ¯̄¯̄

x ∉  for all iAi

x ∈  for all iAi
¯ ¯¯̄¯

x ∈ .⋂
i∈I

Ai
¯ ¯¯̄¯

=⋂
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⋃
i∈I

Ai
¯ ¯¯̄¯

, , , …A1 A2 A3

j= 1, 2, 3, …

∩ = ∅ whenever i ≠ j.Ai Aj (4.5.26)

{ , , , …}A1 A2 A3 A

A .Ai

{ , , , …}A1 A2 A3

4.5.8

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. S

A = { , }A1 A2 = {1, 3, 5, 7, 9}, = {2, 4, 6, 8, 10}A1 A2

B = { , , }B1 B2 B3 = {1, 2, 3, 4, 5, 6, 9}, = {7}, = {8, 9, 10}B1 B2 B3

C = { , , , }C1 C2 C3 C4 = {8, 10}, = {3}, = {1, 4, 9}, = {2, 5, 6, 7},C1 C2 C3 C4

D = { , , , }D1 D2 D3 D4 = {1}, = {2}, = {3}, = {4}, = {5, 6, 7, 8, 9, 10},D1 D2 D3 D4 D5

E = { , }E1 E2 = {1, 3, 5, 7, 9}, = {0, 2, 4, 6, 8, 10}E1 E2

F = { , , }F1 F2 F3 = {1, 2, 3, 4}, = {5, 6, 7}, = {9, 10}F1 F2 F3
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Summary and Review
When dealing with arbitrary intersection or union of intervals, first identify the endpoints, then analyze the sets involved in the
operation to determine whether an endpoint should be included or excluded.
Intersection and union can be performed on a group of similar sets identified by subscripts belonging to an index set.
Consequently, intersection or union can be formed by naming a specific index set.
A collection of sets can be a partition of a set if it satisfies two conditions.

Exercises 

Exercise 

For each , define . Find  and .

 

Answer

, .

Exercise 

For each , define . Evaluate  and .

Exercise 

Define  for each integer . Evaluate  and . 

 

Answer

, .

Exercise 

For each , define . Evaluate  and .

Exercise 

For each , define . Evaluate  and . 

 

Answer

, .

Exercise 

For each , define . Evaluate  and .

Exercise 

4.5.1

n ∈ Z
+ = (− , 2n)An

1
n ⋂

n=1

∞

An ⋃
n=1

∞

An

= (0, 2)⋂
n=1

∞

An = (−1, ∞)⋃
n=1

∞

An

4.5.2

n ∈ Z
+ = {m ∈ Z ∣ − ≤ m ≤ 3n}Bn

n

2
⋂
n=1

∞

Bn ⋃
n=1

∞

Bn

4.5.3

= {n,n+1,n+2, … , 2n+1}Cn n ≥ 0 ⋂
n=0

∞

Cn ⋃
n=0

∞

Cn

= ∅⋂
n=0

∞

Cn =N∪ {0}⋃
n=0

∞

Cn

4.5.4

n ∈ I = {1, 2, 3, … , 100} = [−n, 2n] ∩ZDn ⋂
n∈I

Dn ⋃
n∈I

Dn

4.5.5

n ∈ N = {−n, −n+1, −n+2, … , }En n2 ⋂
n∈N

En ⋃
n∈N

En

= = {−1, 0, 1}⋂
n∈N

En E1 =Z⋃
n∈N

En

4.5.6

n ∈ N = { ∣ m ∈ Z}Fn
m
n ⋂

n∈N

Fn ⋃
n∈N

Fn

4.5.7
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Let , and define  for each . For instance  and . Evaluate  and . 

 

Answer

, .

Exercise 

Define , and for each , let . Evaluate  and .

Exercise 

Evaluate  and . 

 

Answer

, .

Exercise 

Evaluate  and .

Exercise 
Let the universal set be . For each , define

that is,  is the set of points on the parabola , where . Evaluate  and . 

 

Answer

, .

Exercise 

Prove that  for any nonempty index set .

Exercise 

Let  for  
Find: 
(a) 

Answer

(a) 

I = (0, 1) = [1, ]Ai
1
i

i ∈ I = [1, 2]A0.5 = [1, ]A π

4

4
π

⋃
i∈I

Ai ⋂
i∈I

Ai

= [1, ∞)⋃
i∈I

Ai = {1}⋂
i∈I

Ai

4.5.8

I = (0, 1) i ∈ I = (−i, )Bi
1
i

= (−1, ∞)⋃
i∈I

Bi ⋂
i∈I

Bi

4.5.9

(1 −2x, )⋂
x∈(1,2)

x2 (1 −2x, )⋃
x∈(1,2)

x2

(1 −2x, ) = [−1, 1]⋂
x∈(1,2)

x2 (1 −2x, ) = (−3.4)⋃
x∈(1,2)

x2

4.5.10

(x, )⋂
x∈(0,1)

1

x
(x, )⋃

x∈(0,1)

1

x

4.5.11

R
2 r ∈ (0, ∞)

= {(x, y) ∣ y = r };Ar x2 (4.5.27)

Ar y = rx2 r > 0 ⋂
r∈(0,∞)

Ar ⋃
r∈(0,∞)

Ar

= {(0, 0)}⋂
r∈(0,∞)

Ar = × ∪ {(0, 0)}⋃
r∈(0,∞)

Ar R
∗

R
+

4.5.12

=⋂
i∈I

Ai

¯ ¯¯̄¯̄¯̄¯̄¯̄
⋃
i∈I

Ai
¯ ¯¯̄¯

I

4.5.13

= [− , 5i]Ai
1
i

i ∈ .Z
+

= (b) = (c) =A1 A3 A6

= [−1, 5] (b) = [− , 15] (c) = [− , 30]A1 A3
1
3

A6
1
6
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Exercise 

Let  for  
Find: 

(a) 

Exercise 

Let  for  
Find: 
(a) 

Answer

(a) 

Exercise 

Let  for  
Find:

(a)  

 

(c) 

This page titled 4.5: Index Sets and Partitions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris
Kwong (OpenSUNY) .

4.5.14

= [− , 5i]Ai
1
i

i ∈ .Z
+

= (b) =⋃
i=1

n

Ai ⋂
i=1

n

Ai

4.5.15

= (0, )Bi
1
i

i ∈ .Z
+

= (b) = (c) =B1 B3 B6

= (0, 1) (b) = (0, ) (c) = (0, )B1 B3
1
3

A6
1
6

4.5.16

= (0, )Bi
1
i

i ∈ .Z
+

= (b) =⋃
i=1

n

Bi ⋂
i=1

n

Bi

= (d) =⋃
i=1

∞

Bi ⋂
i=1

∞

Bi
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5.1: Intro to Relations and Functions

Relations

Given two nonempty sets  and , we are often interested in some sort of relationship between the elements from these two sets.
A familiar example is the equality of two numbers. By saying , we are proclaiming that the two numbers  and  are related
by being equal in value. Likewise,  is another example of a relation.

Example 
Given , declare  and  to be related if they have the same sign. For instance,  and  are related, so are  and 

. However, 5 and  are not. Note that  is related to  implies that  is also related to .

Example 
For , define “  is related to ” if and only if . Take note that , but . This demonstrates that  is related
to  does not necessarily imply that  is also related to .

Example 
Let  be a set of students, and let  be a set of courses. Given  and , define “  is related to ” if and only if student

 is taking course . While it could be possible that “John Smith is related to MATH 210” because John is taking MATH 210, it
is certainly absurd to say that “MATH 210 is related to John Smith,” because it does not make much sense to say that MATH
210 is taking John Smith. This again illustrates that  is related to  does not necessarily imply that  is also related to .

In these examples, we see that when we say “  is related to ,” the order in which  and  appear may make a difference. This
suggests the following definition.

Definition
A relation from a set  to a set  is a subset of . Hence, a relation  consists of ordered pairs , where  and 

. If , we say that is related to , and we also write .

Remark

We can also replace  by a symbol, especially when one is readily available. This is exactly what we do in, for example, . To
say it is not true that , we can write . Likewise, if , then  is not related to , and we could write . 

Since a relation is a set, we can describe a relation by listing its elements (that is, using the roster method).

Example 

Let  and . Define  if and only if . Then

We note that  consists of ordered pairs  where  and  have the same parity. Be cautious, that  and .
Hence, it is meaningless to talk about whether  or .

hands-on Exercise 

Let  and . Define  if and only if . Use the roster method to describe .

In the last example, 7 never appears as the first element (in the first coordinate) of any ordered pair. Likewise, 1, 5, 7, and 11 never
appear as the second element (in the second coordinate) of any ordered pair.

Functions

The functions we studied in calculus are real functions, which are defined over a set of real numbers, and the results they produce
are also real. In this chapter, we shall study their generalization over other sets. The definition could be difficult to grasp at the
beginning, so we would start with a brief introduction.

A B

a = b a b

a ≥ b

5.1.1

a, b ∈ R∗ a b 7.14 e −π

− 2
–

√ −2 a b b a

5.1.2

a, b ∈ R a b a < b 3 < 5 5 ≮ 3 a

b b a

5.1.3

A B a ∈ A b ∈ B a b

a b

a b b a

a b a b

A B A ×B R (a, b) a ∈ A

b ∈ B (a, b) ∈ R a R b

R a < b

a < b a ≮ b (a, b) ∉ R a b aR b/

5.1.4

A = {1, 2, 3, 4, 5, 6} B = {1, 2, 3, 4} (a, b) ∈ R (a −b) mod 2 = 0

R = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4), (5, 1), (5, 3), (6, 2), (6, 4)}. (5.1.1)

R (a, b) a b 1 ≤ a ≤ 6 1 ≤ b ≤ 4
(1, 5) ∈ R (1, 5) ∉ R

5.1.1

A = {2, 3, 4, 7} B = {1, 2, 3, … , 12} a S b a ∣ b S
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Most students view real functions as computational devices. However, in the generalization, functions are not restricted to
computation only. A better way to look at functions is their input-output relationship. Let  denote a function. Given an element
(which need not be a number), we call the result from  the image under f, and write , which is read as “  of .”

Imagine  as a machine. It takes the input value , and returns  as the output value. This input-output relationship is depicted
in Figure 6.1 in two different ways.

The question is: how could we obtain ? A function need not involve any computation. Consequently, we cannot speak of
“computing” the value of . Instead, we talk about what is the rule we follow to obtain . This rule can be described in
many forms. We can, of course, use a computational rule. But a table, an algorithm, or even a verbal description also work as well.

Domain & Codomain

When we say a real function is defined over the real numbers, we mean the input values must be real numbers. The output values
are also real numbers. In general, the input and output values need not be of the same type. The nearest integer function, denoted 

, rounds the real number  to the nearest integer. Here, the images (the output values) are integers. Consequently, we need to
distinguish the set of input values from the set of possible output values. We call them the domain and the codomain, respectively,
of the function.

Example 
When a professor reports the final letter grades for the students in her class, we can regard this as a function . The domain is
the set of students in her class, and the codomain could be the set of letter grades .

Range & ONTO

We said the codomain is the set of possible output values, because not every element in the codomain needs to appear as the image
of some element from the domain. If no student fails the professor’s class in Example 5.1.5, no one will receive the final grade F.
The collection of the images (the final letter grades) form a subset of the codomain. We call this subset the range of the function .
The range of a function can be a proper subset of the codomain. Hence, the codomain of a function is different from the set of its
images. If the range of a function does equal to the codomain, we say that the function is onto.

Definition: Range

The set of all images of a function is called the range.

Note: the range will be a subset of the codomain.

Example 
For the nearest integer function , the domain is . The codomain is , and the range is also . Hence, the nearest
integer function is onto.

Example 
Let  be a real number. The greatest integer function  returns the greatest integer less than or equal to . For example,

Therefore,  returns  if it is an integer, otherwise, it rounds  down to the next closest integer. Hence, it is also called the
floor function of . It is clear that its domain is , and the codomain and range are both .

hands-on exercise 

Let  be a real number. The least integer function  returns the least integer greater than or equal to . For example,

f

f f(x) f x

f x f(x)

f(x)
f(x) f(x)

[x] x

5.1.5

g

{A, B, C, D, F }

g

5.1.6

h(x) = [x] R Z Z

5.1.7

x ⌊x⌋ x

⌊ ⌋ = 7, ⌊−6.34⌋ = −7, and ⌊15⌋ = 15.50
−−

√ (5.1.2)

⌊x⌋ x x

x R Z

5.1.2

x ⌈x⌉ x
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Thus,  returns  if it is an integer, otherwise, it rounds  up to the next closest integer. Hence, it is also called the ceiling
function of . What is its domain and codomain?

We impose two restrictions on the input-output relationships that we call functions. For any fixed input value , the output from a
function must be the same every time we use the function. As a machine, it spits out the same answer every time we feed the same
value  to it. As a calculator, it displays the same answer on its screen every time we enter the same value , and push the button
for the function. We call the output value the image of , and write . The first important requirement for a function  is: the
image  is unique for any fixed -value.

A good machine must perform properly. In terms of a function , we must be able to obtain  for any value  (and, of course,
produce only one result for each ). This is perhaps a little bit too demanding. A remedy is to restrict our attention to those ’s over
which  would work. The set of legitimate input values is precisely what we call the domain of the function. Consequently, the
second requirement says: for every element  from the domain, the output value  should be well-defined. This is the
mathematical way of saying that the value  can be obtained, or the value  exists.

Example 

Compare this to a calculator. If you enter a negative number and press the  button, an error message will appear. To be able
to compute the square root of a number, the number must be nonnegative. The domain of a function is the set of acceptable
input values for which meaningful results can be found. For the square root function, the domain is , which is the set
of nonnegative real numbers.

hands-on exercise 
For the square root function, we may regard its codomain as . What is its range? Is the function onto?

hands-on exercise 
For the square root function, can we say its domain is ? Explain.

The two conditions or requirements for a relation to be a function:

every element in the domain has an image under , and
the image is unique.

In the next section, we shall present the complete formal definition.

Summary and Review
Relations are generalizations of functions. A relation merely states that the elements from two sets  and  are related in a
certain way.
More formally, a relation is defined as a subset of .  The domain is the set of elements in  and the codomain is the set
of elements in 
The range of a relation is the set of elements in  that appear in the second coordinates of some ordered pairs.
For brevity and for clarity, we often write  if .
Under this convention, the mathematical notations , , , , and their like, can be regarded as relational operators.
A function is a rule that assigns to every element in the domain a unique image in the codomain.

Exercises 

Exercise 
Determine the arrow diagram that represents the relation  defined on  by

Exercise 
Determine the arrow diagram that represents the relation  defined on  by

⌈ ⌉ = 8, ⌈−6.34⌉ = −6, and ⌈15⌉ = 15.50
−−

√ (5.1.3)

⌈x⌉ x x

x

x

x x

x f(x) f

f(x) x

f f(x) x

x x

f

x f(x)
f(x) f(x)

5.1.8
−−

√

∪ {0}R+

5.1.3

R

5.1.4

∪ 0R+

f

A B

A ×B A

B.
B

x R y (x, y) ∈ R

≤ ≥ = ⊆

5.1.1

R {x ∈ Z ∣ −3 ≤ x ≤ 3}

x R y ⇔ 3 ∣ (x −y). (5.1.4)

5.1.2

S {1, 2, 4, 5, 10, 20}
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Exercise 

Let  be the set of dates in November, and let Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday  be the set of days of the week. For November of this year, define the relation  from  to  by

List the ordered pairs in . Is  a function from  to ?

Exercise 
Let  be the domain and the codomain of the cube root function.  Is it onto?

Exercise 
For the square root function, how would you use the interval notation to describe the domain?

Answer

Exercise 
Let  be the domain and the codomain of the absolute value function? Is it onto?

Exercise 
Is the greatest integer function (or floor) from  to  onto? Explain.

Answer

Yes, every integer will be the image of some real number input. 
More specifically, let y be any integer. , so for each . 

Exercise 

(a)  by the rule   Is  onto? Explain completely.

(b)  by the rule   Is  onto? Explain completely

Exercise 

(a)  by the rule   Is  onto? Explain completely.

(b)  by the rule   Is  onto? Explain completely

Answer

(a) Yes.  Let  be any real number.  Choose .   since the real numbers are closed under multiplication. Now, 
  Thus every real number has a pre-image, and therefore  is onto. 

(b) No.  Consider   If  has a pre-image under  then there exists a real number,  such that   Then 
; however,  is not a real number, hence   does not have a pre-image under  in the real numbers.

 

This page titled 5.1: Intro to Relations and Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Harris Kwong (OpenSUNY) .

x S y ⇔ (x < y and x divides y). (5.1.5)

5.1.3

D = {1, 2, 3, … , 30} W = {
} T D W

(x, y) ∈ T ⇔ x falls on y. (5.1.6)

T T T W

5.1.4

R

5.1.5

[0, ∞)

5.1.6

R

5.1.7

R Z

⌊y⌋ = y y ∈ Z, ∃x ∈ R (namely choose x = y)(⌊x⌋ = y)

5.1.8

f : Z → Z f(x) = 3x. f

g : Z → Z g(x) = .x3 g

5.1.9

h : R → R h(x) = 3x. h

k : R → R k(x) = .x2 k

y x = y1
3

x ∈ R

h(x) = h( y) = 3( y) = y.1
3

1
3

h

y = −25. y k x = −25.x2

x = −25
− −−−

√ −25
− −−−

√ y = −25 k
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5.2: Denition of Functions

Definition: Function
Let  and  be nonempty sets. A function from  to  is a rule that assigns to every element of  a unique element in . We
call  the domain, and  the codomain, of the function. If the function is called , we write . Given , its
associated element in  is called its image under . In other words, a function is a relation from  to  with the condition that
for every element in the domain, there exists a unique image in the codomain (this is really two conditions: existence of an
image and uniqueness of an image). We denote it , which is pronounced as “  of .”

A function is sometimes called a map or mapping. Hence, we sometimes say  maps  to its image .

Example 

The function  to  is defined according to the rule

It is a well-defined function. The rule of assignment can be summarized in a table:

We can also describe the assignment rule pictorially with an arrow diagram, as shown in Figure 6.2.

The two key requirements of a function are

every element in the domain has an image under , and
the image is unique.

You may want to remember that every element in  has exactly one “partner” in .

Example 

Figure 6.3 depicts two examples of non-functions. In the one on the left, one of the elements in the domain has no image
associated with it; thus lacking existence of an image. In the one on the right, one of the elements in the domain has two images
assigned to it; thus lacking uniqueness of an image. Both are not functions.

hands-on exercise 
Do these rules

A B A B A B

A B f f : A → B x ∈ A

B f A B

f(x) f x

f x f(x)

5.2.1

f : {a, b, c} {1, 3, 5, 9}

f(a) = 1, f(b) = 5, and f(c) = 9. (5.2.1)

x

f(x)

a

1

b

5

c

9
(5.2.2)

f

A B

5.2.2

5.2.1
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produce functions from  to ? Explain.

hands-on exercise 
Does the definition

produce a function from  to ? Explain.

hands-on exercise 

Does the definition

produce a function from  to ? Explain.

Example 

The function  is defined by

  Also the function  is defined as

Can you explain why the domain of  is ?

Example 
Let  denote the set of students taking Discrete Mathematics, and , and  is the final grade of student 

 in Discrete Mathematics. Every student should receive a final grade, and the instructor has to report one and only one final
grade for each student.   This is precisely what we call a function.

Example 

The function  is defined as . It evaluates the cardinality of a subset of . For
example,

Note that .

hands-on exercise 

Consider Example 5.2.5.  What other subsets  of  also yield ? What are the smallest and the largest
images the function  can produce?

Example 
Consider a function . The domain and the codomain are,

respectively. Not only are their elements different, their binary operations are different too. In the domain , the arithmetic is
performed modulo 7, but the arithmetic in the codomain  is done modulo 5. So we need to be careful in describing the rule of
assignment if a computation is involved. We could say, for example,

x

f(x)

a

5

b

3

c

3

x

g(x)

b

9

c

5

x

h(x)

a

1

b

5

b

3

c

9
(5.2.3)

{a, b, c} {1, 3, 5, 9}

5.2.2

r(x) = {x
2x

 if today is Monday, 
 if today is not Monday 

(5.2.4)

R R

5.2.3

s(x) = { 5
7

 if x < 2, 
 if x > 3, 

(5.2.5)

R R

5.2.3

f : [0, ∞) →R

f(x) = .x−−√ (5.2.6)

g : [2, ∞) →R

g(x) = .x−2
− −−−−

√ (5.2.7)

g [2, ∞)

5.2.4

A G= {A,B,C,D,F} ℓ(x)
x

ℓ : A → G.

5.2.5

n : P({a, b, c, d}) → Z n(S) = |S| {a, b, c, d}

n({a, c}) = n({b, d}) = 2. (5.2.8)

n(∅) = 0

5.2.4

S {a, b, c, d} n(S) = 2
n

5.2.6

f : →Z7 Z5

= {0, 1, 2, 3, 4, 5, 6}, and = {0, 1, 2, 3, 4},Z7 Z5 (5.2.9)

Z7

Z5
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Consequently, starting with any element  in , we consider  as an ordinary integer, multiply by 3, and reduce the answer
modulo 5 to obtain the image . For brevity, we shall write

We summarize the images in the following table:

Take note that the images start repeating after .

hands-on exercise 

Tabulate the images of  defined by

Definition: A Function as a Set of Ordered Pairs
A function  can be written as a set of ordered pairs  from  such that .

 A function is, by definition, a set of ordered pairs, with certain restrictions.

Example 
The function  in Example 5.26 can be written as the set of ordered pairs

If one insists, we could display the graph of a function using an -plane that resembles the usual Cartesian plane. Keep in
mind: the elements  and  come from  and , respectively. We can “plot” the graph for  in Example 5.26 as shown below.

Besides using a graphical representation, we can also use a -matrix. A -matrix is a matrix whose entries are 0 and 1.
For the function , we use a  matrix, whose rows and columns correspond to the elements of  and , respectively, and
put one in the th entry if , and zero otherwise. The resulting matrix is

We call it the incidence matrix for the function .

hands-on exercise 

"Plot” the graph of  in Hands-On Exercise 5.2.5

f(x) = z, where z ≡ 3x (mod 5). (5.2.10)

x Z7 x

f(x)

f(x) ≡ 3x (mod 5). (5.2.11)

n

f(n)

0

0

1

3

2

1

3

4

4

2

5

0

6

3
(5.2.12)

f(4) = 2

5.2.5

g : →Z10 Z5

g(x) ≡ 3x (mod 5). (5.2.13)

f : A → B (x, y) A×B y = f(x)

5.2.7

f

{(0, 0), (1, 3), (2, 1), (3, 4), (4, 2), (5, 0), (6, 3)}. (5.2.14)

xy

x y A B f

(0, 1) (0, 1)
f 7 ×5 A B

(i, j) j= f(i)

0

1

2

3

4

5

6

0 1 2 3 4

⎛

⎝

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜

1

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

⎞

⎠

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟

(5.2.15)

f

5.2.6

g
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Summary and Review
A function  from a set  to a set  (called the domain and the codomain, respectively) is a rule that describes how a value in
the codomain  is assigned to an element from the domain .
But it is not just any rule; rather, the rule must assign to every element  in the domain a unique value in the codomain.
This unique value is called the image of  under the function , and is denoted .
We use the notation  to indicate that the name of the function is , the domain is , and the codomain is .
A function  is the collection of all ordered pairs  from  such that .
The graph of a function may not be a curve, as in the case of a real function. It can be just a collection of points.
We can also display the images of a function in a table, or represent the function with an incidence matrix.

Exercises 

exercise 
What subset  of  would you use to make  defined by  a function?

Answer

exercise 
What subset  of  would you use to make

a. , where 
b. , where 

 functions?

exercise 

Which of these data support a function from  to ? Explain.

 
 

Answer

Only  is a function. The image  is undefined, and there are two values for . Hence, both  and  are not well-
defined functions.

exercise 
(a) Use arrow diagrams to show three different functions from  to . 
(b) How many different functions from  to  are possible? 

exercise 

Determine whether these are functions. Explain.

a. , where .
b. , where .

c. , where .

Answer

(a) Yes, because no division by zero will ever occur.

f A B

B A

x

x f f(x)
f : A → B f A B

f : A → B (x, y) A×B y = f(x)

5.2.1

A R f : A →R f(x) = 3x−7
− −−−−

√

[ , ∞)7
3

5.2.2

A R

g : A →R g(x) = (x−3)(x−7)
− −−−−−−−−−−

√

h : A →R h(x) =
x+2

(x−2)(5−x)√

5.2.3

{1, 2, 3, 4} {1, 2, 3, 4}

x

f(x)

1

3

2

4

3

2

x

g(x)

1

2

2

4

3

3

4

2

x

h(x)

1

2

2

4

3

3

3

2

4

3
(5.2.16)

g f(4) h(3) f h

5.2.4

{1, 2, 3, 4} {1, 2, 3, 4}
{1, 2, 3, 4} {1, 2, 3, 4}

5.2.5

f : R →R f(x) = 3
+5x2

g : (5, ∞) →R g(x) = 7
x−4√

h : R →R h(x) = − 7 −4x+4x2− −−−−−−−−−
√
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exercise 

Determine whether these are functions. Explain.

a. , where .
b. , where .

exercise 

Use arrow diagrams to show two different functions from  to .

 

Answer

answers will vary

exercise 

Let  be your family tree that includes your biological mother, your maternal grandmother, your maternal great-grandmother,
and so on, and all of their female descendants. Determine which of the following define a function from  to .

a. , where  is the mother of .
b. , where  is ’s sister.
c. , where  is an aunt of .
d. , where  is the eldest daughter of ’s maternal grandmother.

exercise 

For each of the following functions, determine the image of the given .

a. , , .
b. ,  (mod 11), .
c. ,  (mod 15), .

Answer

(a) 7 (b) 7 (c) 3

exercise 

For each of the following functions, determine the images of the given -values.

, , , , and .

Remark: Recall that, without parentheses, the notation “mod” means the binary operation mod.

, , , , and .

This page titled 5.2: Denition of Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

5.2.6

s : R →R +[s(x) = 9x2 ]2

t : R →R |x− t(x)| = 4

5.2.7

{a, b, c, d} {1, 2, 3, 4, 5, 6}

5.2.8

T

T T

: T → Th1 (x)h1 x

: T → Th2 (x)h2 x

: T → Th3 (x)h3 x

: T → Th4 (x)h4 x

5.2.9

x

: N−{1} →Nk1 (x) = smallest prime factor of xk1 x = 217
: →k2 Z11 Z11 (x) ≡ 3xk2 x = 6
: →k3 Z15 Z15 (x) ≡ 3xk3 x = 6

5.2.10

x

: Z → Zℓ1 (x) = x mod 7ℓ1 x = 250 x = 0 x = −16

: Z → Zℓ2 (x) = gcd(x, 24)ℓ2 x = 100 x = 0 x = −21
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5.3: One-to-One Functions
We distinguish two special families of functions: one-to-one functions and onto functions. We shall discuss one-to-one functions in
this section. Onto functions were introduced in section 5.2 and will be developed more in section 5.4.

One-to-One (Injective)
Recall that under a function each value in the domain has a unique image in the range.  For a one-to-one function, we add the
requirement that each image in the range has a unique pre-image in the domain. 

Definition: One-to-One (Injection)
A function  is said to be one-to-one if

for all elements . A one-to-one function is also called an injection, and we call a function injective if it is one-to-one.
A function that is not one-to-one is referred to as many-to-one.

The contrapositive of this definition is: A function  is  one-to-one  if

Any function is either one-to-one or many-to-one. A function cannot be one-to-many because no element can have multiple
images. The difference between one-to-one and many-to-one functions is whether there exist distinct elements that share the same
image. There are no repeated images in a one-to-one function.

 

Definition: Identity Function

The identity function on any nonempty set 

maps any element back to itself.

 It is clear that all identity functions are one-to-one.

Example 
The function  defined by  for some fixed element , is an example of a constant function. It is a
function with only one image. This is the exact opposite of an identity function. It is clearly not  one-to-one unless .

For domains with a small number of elements, one can use inspection on the images to determine if the function is one-to-one. This
becomes impossible if the domain contains a larger number of elements.

In practice, it is easier to use the contrapositive of the definition to test whether a function is one-to-one:

To prove a function is One-to-One
To prove  is one-to-one:

Assume  
Show it must be true that 
Conclude: we have shown if  then , therefore  is one-to-one, by definition of one-to-one.

Example 

Prove the function  defined by  is one-to-one.

f : A → B

f( ) = f( ) ⇒ =x1 x2 x1 x2 (5.3.1)

, ∈ Ax1 x2

f : A → B

≠ ⇒ f( ) ≠ f( )x1 x2 x1 x2 (5.3.2)

A

: A → A, (x) = x,IA IA (5.3.3)

5.3.1

h : A → A h(x) = c c ∈ A

|A| = 1

f( ) = f( ) ⇒ =x1 x2 x1 x2 (5.3.4)

f : A → B

f( ) = f( )x1 x2

=x1 x2

f( ) = f( )x1 x2 =x1 x2 f

5.3.2

f : R →R f(x) = 3x+2
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Solution

Assume , which means  
Thus  
so  . 
We have shown if  then . Therefore  is one-to-one, by definition of one-to-one.

Hands-on exercise 

Prove the function  defined by  is one-to-one.

Hands-on exercise 
Determine whether the function  defined by  is one-to-one.

Interestingly, sometimes we can use calculus to determine if a real function is one-to-one. A real function  is increasing if

and decreasing if

Obviously, both increasing and decreasing functions are one-to-one. From calculus, we know that

A function is increasing over an open interval  if  for all .
A function is decreasing over an open interval  if  for all .

Therefore, if the derivative of a function is always positive, or always negative, then the function must be one-to-one.

Example 

The function  defined by

is one-to-one, because  for any . Likewise, the function  defined by

is also one-to-one, because  for any .

Hands-on exercise 

Use both methods to show that the function  defined by  is one-to-one.

To prove a function is NOT one-to-one

To prove  is NOT one-to-one:

Exhibit one case (a counterexample) where   and 
Conclude: we have shown there is a case where   and , therefore  is NOT one-to-one.

Example 

Prove the function  given by  is not one-to-one. 
 

Solution

Consider  and . Clearly .  However,  and  so  
we have shown there is a case where   and , therefore  is NOT one-to-one.

Example 

f( ) = f( )x1 x2 3 +2 = 3 +2.x1 x2

3 = 3x1 x2

=x1 x2

f( ) = f( )x1 x2 =x1 x2 f

5.3.1

g : R →R g(x) = 5 −7x

5.3.2

h : [2, ∞) →R h(x) = x−2
− −−−−

√

f

< ⇒ f( ) < f( ),x1 x2 x1 x2 (5.3.5)

< ⇒ f( ) > f( ).x1 x2 x1 x2 (5.3.6)

(a, b) (x) > 0f ′ x ∈ (a, b)
(a, b) (x) < 0f ′ x ∈ (a, b)

5.3.4

p : R →R

p(x) = 2 −5x3 (5.3.7)

(x) = 6 > 0p′ x2 x ∈ R∗ q : (− , ) →Rπ

2
π

2

q(x) = tanx (5.3.8)

(x) = x > 0q ′ sec2 x ∈ (− , )π
2

π
2

5.3.3

k : (0, ∞) →R k(x) = lnx

f : A → B

≠x1 x2 f( ) = f( ).x1 x2

≠x1 x2 f( ) = f( )x1 x2 f

5.3.5

h : R →R h(x) = x2

a = 3 b = −3 a ≠ b h(3) = 9 h(−3) = 9 h(a) = h(b).
a ≠ b h(a) = h(b) h

5.3.6
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The function  defined by

is not one-to-one, because, for example, . The function  defined by

is one-to-one, because if , then  implies that .

hands-on exercise 

Show that the function  defined by

is one-to-one.

Example 
Let  be the set of all married individuals from a monogamous community who are neither divorced nor widowed. Then the
function  defined by

is one-to-one. The reason is, it is impossible to have  and yet .

Summary and Review
A function  is said to be one-to-one if .
No two images of a one-to-one function are the same.
Know how to write a proof to show a function is one-to-one.
To show that a function  is not one-to-one, all we need is to find two different -values that produce the same image; that is,
find  such that .

Exercises 

Exercise 

Which of the following functions are one-to-one? Explain.

(a) , .

(b) , . 
 

Solution

(a) No. For example,  
(b) Yes, since  for .

Exercise 
Decide if this function is one-to-one or not.  Then prove your conclusion.

, .

Exercise 
Decide if this function is one-to-one or not.  Then prove your conclusion.

f : Z → Z

f(n) = {
n
2
n+1

2

 if n is even 

 if n is odd 
(5.3.9)

f(0) = f(−1) = 0 g : Z → Z

g(n) = 2n (5.3.10)

g( ) = g( )n1 n2 2 = 2n1 n2 =n1 n2

5.3.4

h : Z →N

h(n) = { 2n+1
−2n

 if n ≥ 0, 
 if n < 0, 

(5.3.11)

5.3.7

A

s : A → A

s(x) =  spouse of x (5.3.12)

≠x1 x2 s( ) = s( )x1 x2

f f( ) = f( ) ⇒ =x1 x2 x1 x2

f x

≠x1 x2 f( ) = f( )x1 x2

5.3.1

f : R →R f(x) = −2 +1x3 x2

g : [ 2, ∞) →R f(x) = −2 +1x3 x2

f(0) = f(2) = 1
(x) = 3 −4x = x(3x−4) > 0g′ x2 x > 2

5.3.2

p : R →R p(x) = |1 −3x|

5.3.3
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, . 
 

Solution

 No. For example, , but  and  .  
We have shown a case where  and , so  is NOT one-to-one.

Exercise 
Decide if this function is one-to-one or not.  Then prove your conclusion.

, .

Exercise 

Determine which of the following are one-to-one functions.

a. ; 
b. ; 
c. ; 

Solution

(a) One-to-one (b) Not one-to-one (c) One-to-one

Exercise 
Determine which of the following are one-to-one functions and explain your answer.

a. ; 
b. ; 

Exercise 
Determine which of the following functions are one-to-one.

a. ; , , , , 
b. ; , , , 

Solution

(a) Not one-to-one (b) One-to-one

Exercise 

Determine which of the following functions are one-to-one.

a. ; , , , , 
b. ; , , , , 

Exercise 
List all the one-to-one functions from  to .

Hint

List the images of each function. 
 

Solution

There are twelve one-to-one functions from  to . The images of 1 and 2 under them are listed below.

q : R →R q(x) = x4

2 ≠ −2 q(2) = 16 q(−2) = 16
≠x1 x2 q( ) = q( )x1 x2 q

5.3.4

f : R →R f(x) = 6 −5x

5.3.5

f : Z → Z f(n) = +1n3

g : Q→Q g(x) = n2

k : R →R k(x) = 5x

5.3.6

p : P({1, 2, 3, … ,n}) → {0, 1, 2, … ,n} p(S) = |S|

q : P({1, 2, 3, … ,n}) →P({1, 2, 3, … ,n}) q(S) = S
¯¯̄

5.3.7

: {1, 2, 3, 4, 5} → {a, b, c, d}f1 (1) = bf1 (2) = cf1 (3) = af1 (4) = af1 (5) = cf1

: {1, 2, 3, 4} → {a, b, c, d, e}f2 (1) = cf2 (2) = bf2 (3) = af2 (4) = df2

5.3.8

: {1, 2, 3, 4, 5} → {a, b, c, d, e}g1 (1) = bg1 (2) = bg1 (3) = bg1 (4) = ag1 (5) = dg1

: {1, 2, 3, 4, 5} → {a, b, c, d, e}g2 (1) = dg2 (2) = bg2 (3) = eg2 (4) = ag2 (5) = cg2

5.3.9

{1, 2} {a, b, c, d}

{1, 2} {a, b, c, d}
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Exercise 
Is it possible to find a one-to-one function from  to ? Explain.

Exercise 

Determine which of the following functions are one-to-one.

a. ;  (mod 10).
b. ;  (mod 10).
c. ;  (mod 36).

Solution

(a) One-to-one (b) Not one-to-one (c) Not one-to-one

Exercise 

Decide if this function is one-to-one or not.  Then prove your conclusion.

  defined by  is one-to-one.

Exercise 

Decide if this function is one-to-one or not.  Then prove your conclusion.

 defined by  is one-to-one.

Solution

 No. For example, , but  and  .  
We have shown a case where  and , so  is NOT one-to-one.

Exercise 
Give an example of a one-to-one function  from  to  that is not the identity function.

This page titled 5.3: One-to-One Functions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

1

2

f1

a

b

f2

a

c

f3

a

d

f4

b

a

f5

b

c

f6

b

d

f7

c

a

f8

c

b

f9

c

d

f10

d

a

f11

d

b

f12

d

c

(5.3.13)

5.3.10

{1, 2, 3, 4} {1, 2}

5.3.11

f : →Z10 Z10 h(n) ≡ 3n
g : →Z10 Z10 g(n) ≡ 5n
h : →Z36 Z36 h(n) ≡ 3n

5.3.12

k : R →R k(x) = 3 −5x2

5.3.13

f : R →R f(x) = 57

8 ≠ 17 f(8) = 57 f(17) = 57
≠x1 x2 f( ) = f( )x1 x2 f

5.3.14

f N N
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5.4: Onto Functions and Images/Preimages of Sets
One-to-one functions focus on the elements in the domain. We do not want any two of them sharing a common image. Onto
functions focus on the codomain. We want to know if it contains elements not associated with any element in the domain.

Definition: ONTO (surjection)
A function  is onto if, for every element , there exists an element  such that

An onto function is also called a surjection, and we say it is surjective.

Example 
The graph of the piecewise-defined functions  defined by

is displayed on the left in Figure 6.5. It is clearly onto, because, given any , we can find at least one  such that
. Likewise, the function  defined by

is also onto. Its graph is displayed on the right of Figure 6.5.

Hands-on exercise 
The two functions in Example 5.4.1 are onto but not one-to-one. Construct a one-to-one and onto function  from  to .

Hands-on exercise 
Construct a function  that is one-to-one but not onto.

f : A → B b ∈ B a ∈ A

f(a) = b. (5.4.1)

5.4.1

h : [1, 3] → [2, 5]

h(x) = { 3x−1
−3x+11

 if 1 ≤ x ≤ 2, 
 if 2 < x ≤ 3, 

y ∈ [2, 5] x ∈ [1, 3]
h(x) = y k : [1, 3] → [2, 5]

k(x) = { 3x−1
5

 if 1 ≤ x ≤ 2, 
 if 2 < x ≤ 3, 

5.4.1

f [1, 3] [2, 5]

5.4.2

g : [1, 3] → [2, 5]
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Hands-on exercise 
Find a subset  of  that would make the function  defined by  an onto function.

Example 

Consider the function  defined by 

Is this function onto?

Remark

This function maps ordered pairs to a single real numbers. The image of an ordered pair is the average of the two coordinates of
the ordered pair. To decide if this function is onto, we need to determine if every element in the codomain has a preimage in the
domain.

Solution

Take any real number,    Choose .   since  because the real numbers are closed
under multiplication and    .  Thus, for any real number, we have shown a preimage 

 that maps to this real number.  Therefore, this function is onto.

 

In general, how can we tell if a function  is onto? The key question is: given an element  in the codomain, is it the
image of some element  in the domain? If it is, we must be able to find an element  in the domain such that .
Mathematically, if the rule of assignment is in the form of a computation, then we need to solve the equation  for . If we
can always express  in terms of , and if the resulting -value is in the domain, the function is onto.

To prove a function is onto
For 

Let  be any element in the codomain, 
Figure out an element in the domain that is a preimage of ; often this involves some "scratch work" on the side.
Choose  the value you found.
Demonstrate  is indeed an element of the domain, 
Show 
Conclude with: we have found a preimage in the domain for an arbitrary element of the codomain, so every element of the
codomain has a preimage in the domain. Therefore  is onto, by definition of onto.

Example 

The function  is defined as . Prove that it is onto.

Scratch Work

We need to find an  that maps to  Suppose  ; now we solve for  in terms of . We find

 (We'll need to verify  is a real number - an element in the domain.)

That's the  we want to choose so that .  

Now for the proof:

Proof

Let  be any element of .   
Choose    
Now, since the real numbers are closed under subtraction and non-zero division,  

5.4.3

B R s : R → B s(x) = x2

5.4.2

g : R×R →R g(x, y) = .
x+y

2

x ∈ R. (a, b) = (2x, 0) (a, b) ∈ R×R 2x ∈ R

0 ∈ R. g(a, b) = g(2x, 0) = = x
2x+0

2

R×R

f : A → B y

x x f(x) = y

y = f(x) x

x y x

f : A → B

y B.
y

x =
x A.

f(x) = y.

f

5.4.3

g : R →R g(x) = 5x+11

x y. y = 5x+11 x y

x = .
y−11

5
(5.4.2)

x

x g(x) = y

y R

x = .
y−11

5

x ∈ R.
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Thus, we have found an  such that  
 
So, given an arbitrary element of the codomain, we have shown a preimage in the domain. 
Thus every element in the codomain has a preimage in the domain. Therefore, by the definition of onto,  is onto.

Hands-on exercise 

Determine whether   defined by 

is an onto function.

Example 

Is the function  defined by

one-to-one? Is it onto?

Solution

Since , the function  is not one-to-one. Since  for any , the function  is not onto.

hands-on exercise 
Is the function  defined by  onto? Explain.

Images and Preimages of Sets 

Definition: Image of a Set

Given a function , and , the image of   under   is defined as

In words,  is the set of all the images of the elements of .

A few remarks about the definition:

a. It is about the image of a subset  of the domain of . Do not confuse it with the image of an element  from .
b. Therefore, do not merely say “the image.” Be specific: the image of an element, or the image of a subset.
c. Better yet: include the notation  or  in the discussion.
d. While  is an element in the codomain,  is a subset of the codomain.
e. Perhaps, the most important thing to remember is:

If , then , and there exists an  
such that .

This key observation is often what we need to start a proof with.

Note:
Let  be a function. The image of set  is the range of , which is the set of all possible images that  can assume.

g(x) = g( ) = 5( ) +11 = y−11 +11 = y.
y−11

5

y−11

5

x ∈ R g(x) = y.

g

5.4.4

f : R →R

f(x) = { 3x+1
4x

 if x ≤ 2 
 if x > 2 

5.4.4

u : Z → Z

u(n) = { 2n
−n

 if n ≥ 0 
 if n < 0 

u(−2) = u(1) = 2 u u(n) ≥ 0 n ∈ Z u

5.4.5

v : N →N v(n) = n+1

f : A → B C ⊆ A C f

f(C) = {f(x) ∣ x ∈ C}. (5.4.3)

f(C) C

C A x A

f(x) f(C)
f(x) f(C)

y ∈ f(C) y ∈ B x ∈ C

f(x) = y

f : A → B A f f
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Also, if the range of  is equal to , then  is onto.

Example 

For the function  defined by

we find  the range of  is . We also have, for example, . It is clear that  is neither one-to-one nor
onto.

Example 
For the function  defined by

we find range of  is , and . The function  is both one-to-one and onto.

Example 
Determine , where the function  is defined according to

Remark: Strictly speaking, we should write  because the argument is an ordered pair of the form . However, we
often write , because  can be viewed as a two-variable function. The first variable comes from , the second
comes from , and we add them to form the image.  Notice we are asked for the image of a set with two elements.

Solution

Because

we determine that .a Set

Definition: Preimage of a Set

Given a function , and , the preimage   of under   is defined as

Hence,  is the set of elements in the domain whose images are in . The symbol  is also pronounced as “
inverse of .”

Some remarks about the definition:

a. The preimage of  is a subset of the domain .

b. In particular, the preimage of  is always .

c. The key thing to remember is:

If , then , and .

d. It is possible that  for some subset . If this happens,  is not onto.

e. Therefore,  is onto if and only if  for every .

Example 
If  is defined by , find .

Solution

f B f

5.4.5

f : R →R

f(x) = ,x2

f [0, ∞) f([ 2, ∞)) = [4, ∞) f

5.4.6

g : Z → Z

g(n) = n+3,

g Z g(N) = {4, 5, 6, …} g

5.4.7

f({(0, 2), (1, 3)}) f : {0, 1, 2} ×{0, 1, 2, 3} → Z

f(a, b) = a+b.

f((a, b)) (a, b)
f(a, b) f {0, 1, 2}
{0, 1, 2, 3}

f(0, 2) = 0 +2 = 2, and f(1, 3) = 1 +3 = 4, (5.4.4)

f({(0, 2), (1, 3)}) = {2, 4}

f : A → B D ⊆ B D f

(D) = {x ∈ A ∣ f(x) ∈ D}.f−1 (5.4.5)

(D)f−1 C (D)f−1 f

D

D A

B A

x ∈ (D)f−1 x ∈ A f(x) ∈ D

(D) = ∅f−1 D f

f ({b}) ≠ ∅f−1 b ∈ B

5.4.8

t : R →R t(x) = −5x+5x2 ({−1})t−1
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We want to find  such that . Hence, we have to solve the equation

The solutions are  and . Therefore, .

hands-on Exercise 

If  is defined by , find .

Example 

For the function  defined by

we find

Since preimages are sets, we need to write the answers in set notation.

Summary and Review
A function  is onto if, for every element , there exists an element  such that .
Know how to prove  is an onto function.
To show that a function is not onto, all we need is to find an element , and show that no -value from  would satisfy 

.
In addition to finding images & preimages of elements, we also find images & preimages of sets.
Given a function , the image of  is defined as .

If , then , and there exists an  such that .

The preimage of  is defined as .
If , then , and .

Exercises 

exercise 
Determine which of the following are onto functions.

a. ; 
b. ; 
c. ; 
d. ; 

Solution

(a) Not onto (b) Not onto (c) Onto (d) Not onto .

exercise 
Determine which of the following are onto functions.

a. ; 
b. ; 

exercise 

Determine which of the following functions are onto.

x t(x) = −5x+5 = −1x2

0 = −5x+6 = (x−2)(x−3).x2

x = 2 x = 3 ({−1}) = {2, 3}t−1

5.4.6

k : Q→R k(x) = −x−7x2 ({3})k−1

5.4.9

f : {0, 1, 2} ×{0, 1, 2, 3} → Z

f(a, b) = a+b, (5.4.6)

({3})f−1

({4})f−1

=

=

{(0, 3), (1, 2), (2, 1)},

{(1, 3), (2, 2)}.

f : A → B b ∈ B a ∈ A f(a) = b

f

y ∈ B x A

f(x) = y

f : A → B C ⊆ A f(C) = {f(x) ∣ x ∈ C}

y ∈ f(C) y ∈ B x ∈ C f(x) = y

D ⊆ B (D) = {x ∈ A ∣ f(x) ∈ D}f−1

x ∈ (D)f−1 x ∈ A f(x) ∈ D

5.4.1

f : Z → Z f(n) = +1n3

g : Q→Q g(x) = n2

h : R →R h(x) = −xx3

k : R →R k(x) = 5x

5.4.2

p : P({1, 2, 3, … ,n}) → {0, 1, 2, … ,n} p(S) = |S|

q : P({1, 2, 3, … ,n}) →P({1, 2, 3, … ,n}) q(S) = S
¯¯̄

5.4.3
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a. ; , , , , 
b. ; , , , 
c. ; 

Solution

 and  are not onto,  is onto.

exercise 
Determine which of the following functions are onto.

a. ; , , , , 
b. ; , , , , 

Exercise 

Is it possible for a function from  to  to be onto? Explain.

Answer

No, because we have at most two distinct images, but the codomain has four elements.

exercise 
List all the onto functions from  to ?

Hint

List the images of each function.

exercise 
Determine which of the following functions are onto.

a. ;  (mod 10).
b. ;  (mod 10).
c. ;  (mod 36).

Solution

(a) Onto (b) Not onto (c) Not onto

exercise 
Determine which of the following functions are onto.

a. ;  (mod 36).
b. ;  (mod 10).
c. ;  (mod 10).

exercise 
Given a function , and , since  is a subset of , the preimage of this subset is indicated by the notation 

. Consider the function  defined by , and . 
 
(a) Find .

(b) Find .

Solution

: {1, 2, 3, 4, 5} → {a, b, c, d}f1 (1) = bf1 (2) = cf1 (3) = af1 (4) = af1 (5) = cf1

: {1, 2, 3, 4} → {a, b, c, d, e}f2 (1) = cf2 (2) = bf2 (3) = af2 (4) = df2

: Z → Zf3 (n) = −nf3

f1 f2 f3

5.4.4

: {1, 2, 3, 4, 5} → {a, b, c, d, e}g1 (1) = bg1 (2) = bg1 (3) = bg1 (4) = ag1 (5) = dg1

: {1, 2, 3, 4, 5} → {a, b, c, d, e}g2 (1) = dg2 (2) = bg2 (3) = eg2 (4) = ag2 (5) = cg2

5.4.5

{1, 2} {a, b, c, d}

5.4.6

{1, 2, 3, 4} {a, b}

5.4.7

f : →Z10 Z10 h(n) ≡ 3n
g : →Z10 Z10 g(n) ≡ 5n
h : →Z36 Z36 h(n) ≡ 3n

5.4.8

r : →Z36 Z36 r(n) ≡ 5n
s : →Z10 Z10 s(n) ≡ n+5
t : →Z10 Z10 t(n) ≡ 3n+5

5.4.9

f : A → B C ⊂ A f(C) B

(f(C))f−1 f : Z → Z f(x) = x2 C = {0, 1, 2, 3}

f(C)

(f(C))f−1
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(a) . 
(b) .

exercise 
Give an example of a function  that is

a. neither one-to-one nor onto
b. one-to-one but not onto
c. onto but not one-to-one
d. both one-to-one and onto

Exercise 
For each of the following functions, find the image of , and the preimage of .

(a) ; , , , , ; , .

(b) ; , , , ; , .

(c) ; , , , , ; , .

(d) ; , , , , ; , .

Solution

(a)  ;  
(b)  ;  
(c)  ;  
(d)  ; 

Exercise 

Define the  according to .

a. Find .
b. Find .
c. Find , where .

Exercise 

The function  is defined as , and the function  is defined as .

a. Find  and .
b. Find  and .

Solution

(a)  and  . 
(b)   and .

Exercise 
Is the function  defined by

one-to-one? Is it onto?

Exercise 

f(C) = {0, 2, 4, 9}
(f(C)) = {−3, −2, −1, 0, 1, 2, 3}f−1

5.4.10

f : N →N

5.4.11

C D

: {1, 2, 3, 4, 5} → {a, b, c, d}f1 (1) = bf1 (2) = cf1 (3) = af1 (4) = af1 (5) = cf1 C = {1, 3} D = {a, c}

: {1, 2, 3, 4} → {a, b, c, d, e}f2 (1) = cf2 (2) = bf2 (3) = af2 (4) = df2 C = {1, 3} D = {b, d}

: {1, 2, 3, 4, 5} → {a, b, c, d, e}f3 (1) = bf3 (2) = bf3 (3) = bf3 (4) = af3 (5) = df3 C = {1, 3, 5} D = {c}

: {1, 2, 3, 4, 5} → {a, b, c, d, e}f4 (1) = df4 (2) = bf4 (3) = ef4 (4) = af4 (5) = cf4 C = {3} D = {c}

(C) = {a, b}f1 (D) = {2, 3, 4, 5}f−1
1

(C) = {a, c}f2 (D) = {2, 4}f−1
2

(C) = {b, d}f3 (D) = ∅f−1
3

(C) = {e}f4 (D) = {5}f−1
4

5.4.12

r : Z×Z →Q r(m,n) = 3m5n

r({1, 2, 3} ×{−1, 0, 1})

({ })r−1 25
27

(D)r−1 D = {3, 9, 27, 81, … }

5.4.13

u : R →R u(x) = 3x+11 v : Z →R v(x) = 3x+11

u([ 3, 5)) v({3, 4, 5})
((2, 7 ])u−1 ((2, 7 ])v−1

u([ 3, 5)) = [ 20, 26] v({3, 4, 5}) = {20, 23, 26}

((2, 7 ]) = (−3, − ]u−1 4
3

((2, 7 ] = {−2})v−1

5.4.14

h : Z → Z

h(n) = { 2n
−n

 if n ≥ 0 
 if n < 0 

(5.4.7)

5.4.15
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The function  is defined as .

(a) Find , , .

(b) Is  onto?

(c) Is  one-to-one?

Answer

(a) , , . 
(b) Consider any  in the codomain.  Let . Since  is closed under subtraction and non-zero
division,  and  , thus .  
Then .  So, every element in the codomain has a preimage in the domain and thus  is onto. 
(c) Yes, if   This means  and (dividing by 3) 

 
Now, since  subtract equals,  and  from both sides to get   Because  and  ,
we have   

 so  is one-to-one.

 

This page titled 5.4: Onto Functions and Images/Preimages of Sets is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by Harris Kwong (OpenSUNY) .

f : R×R →R×R f(x, y) = (x+y, 3y)

f(3, 4) f(−2, 5) f(2, 0)

f

f

f(3, 4) = (7, 12) f(−2, 5) = (3, 15) f(2, 0) = (2, 0)

(a, b) (x, y) = (a− , )b

3
b

3
R

a− ∈ R
b

3
∈ R

b

3
(x, y) ∈ R×R

f(x, y) = f(a− , ) = (a, b)b

3
b

3
f

f( , ) = f( , ) then ( + , 3 ) = ( + , 3 ).x1 y1 x2 y2 x1 y1 y1 x2 y2 y2 3 = 3y1 y2

= .y1 y2

+ = + ,x1 y1 x2 y2 y1 y2 = .x1 x2 =x1 x2 =y1 y2

( , ) = ( , ).x1 y1 x2 y2

f( , ) = f( , ) → ( , ) = ( , ),x1 y1 x2 y2 x1 y1 x2 y2 f
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5.5: Inverse Functions and Composition
A bijection (or one-to-one correspondence) is a function that is both one-to-one and onto. Naturally, if a function is a bijection, we
say that it is bijective. If a function  is a bijection, we can define another function  that essentially reverses the
assignment rule associated with . Then, applying the function  to any element  from the codomain , we are able to obtain an
element  from the domain  such that . Let us refine this idea into a more concrete definition.

Definition: Inverse Function
Let  be a bijective function. Its inverse function is the function  with the property that

The notation  is pronounced as “  inverse.” See figure below for a pictorial view of an inverse function.

 

Why is  a well-defined function? For it to be well-defined, every element  must have a unique image. This
means given any element , we must be able to find one and only one element  such that . Such an  exists,
because  is onto, and there is only one such element  because  is one-to-one. Therefore,  is a well-defined function.

How to find  

If a function  is defined by a computational rule, then the input value  and the output value  are related by the equation 
. In an inverse function, the role of the input and output are switched. Therefore, we can find the inverse function  by

following these steps:

 so write , using the function definition of 
Solve for . That is, express  in terms of . The resulting expression is .
Be sure to write the final answer in the form . Do not forget to include the domain and the codomain, and
describe them properly.

Example 
To find the inverse function of  defined by , we start with the equation .  Solving for , we
find . Therefore, the inverse function is

It is important to describe the domain and the codomain, because they may not be the same as the original function.

Example 
The function  defined by  is a bijection. Its inverse function is 

 The function  is also written as , which follows the same notation we use for inverse functions.

f : A → B g

f g y B

x A f(x) = y

f : A → B : B → Af−1

(b) = a ⇔ b = f(a).f−1 (5.5.1)

f−1 f

: B → Af−1 b ∈ B

b ∈ B a ∈ A f(a) = b a

f a f f−1

f −1

f x y

y = f(x) f−1

(y) = x ⟺ y = f(x),f−1 y = f(x) f(x).
x x y (y)f−1

(y) = …f−1

5.5.1

f : R →R f(x) = 2x+1 y = 2x+1 x

x = (y−1)1
2

: R →R, (y) = (y−1).f−1 f−1 1

2
(5.5.2)

5.5.2

s : [ − , ] → [−1, 1]π

2
π

2
s(x) = sinx

: [−1, 1] → [ − , ], (y) = arcsiny.s−1 π

2

π

2
s−1 (5.5.3)

arcsiny ysin−1
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hands-on Exercise 
The function  is defined as . Show that it is a bijection, and find its inverse function

hands-on Exercise 
Find the inverse function of  defined by .

Remark

Exercise caution with the notation. Assume the function  is a bijection. The notation  means the image of 3 under
the inverse function . If , we know that . The notation  means the preimage of the set . In
this case, we find . The results are essentially the same if the function is bijective.

If a function  is many-to-one, then it does not have an inverse function. This makes the notation  meaningless.
Nonetheless,  is well-defined, because it means the preimage of . If , we know 

.

In general,  means the preimage of the subset  under the function . Here, the function  can be any function. If  is a
bijection, then  can also mean the image of the subset  under the inverse function . There is no confusion here,
because the results are the same.

Example 
The function  is defined as

Find its inverse function.

Solution

Since  is a piecewise-defined function, we expect its inverse function to be piecewise-defined as well. First, we need to find
the two ranges of input values in . The images for  are , and the images for  are . Hence, the
codomain of , which becomes the domain of , is split into two halves at 3. The inverse function should look like

Next, we determine the formulas in the two ranges. We find 

 

The details are left to you as an exercise.

hands-on Exercise 
Find the inverse function of  defined by

Be sure you describe  properly.

Example 
Find the inverse function of  defined by

5.5.1

f : [−3, ∞) → [ 0, ∞) f(x) = x+3
− −−−−

√

5.5.2

g : R → (0, ∞) g(x) = ex

f : Z → Z (3)f−1

f−1 (3) = 5f−1 f(5) = 3 ({3})f−1 {3}
({3}) = {5}f−1

g : Z → Z (3)g−1

({3})g−1 {3} ({3}) = {1, 2, 5}g−1

g(1) = g(2) = g(5) = 3

(D)f−1 D f f f

(D)f−1 D f−1

5.5.3

f : R →R

f(x) = { 3x
2x+1

 if x ≤ 1, 
 if x > 1. 

(5.5.4)

f

f−1 x ≤ 1 y ≤ 3 x > 1 y > 3
f f−1

(x) = {f−1 ???
???

 if x ≤ 3, 
 if x > 3. 

(5.5.5)

(x) = {f−1 x1
3

(x−1)1
2

 if x ≤ 3, 

 if x > 3. 
(5.5.6)

5.5.3

g : R →R

g(x) = { 3x+5
5x−7

 if x ≤ 6, 
 if x > 6. 

(5.5.7)

g−1

5.5.4

f : Z →N∪ {0}
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Solution

In an inverse function, the domain and the codomain are switched, so we have to start with  before we
describe the formula that defines . Writing , we find

We need to consider two cases.

If , then  is even, and .

If , then  is odd, and .

 

Therefore, the inverse function is defined by  by:

Verify this with some numeric examples.

hands-on Exercise 
The function  is defined as

Find its inverse.

Let  and  be finite sets. If there exists a bijection , then the elements of  and  are in one-to-one correspondence
via . Hence, . This idea will be very important for our section on Infinite Sets and Cardinality.

Composite Function
Given functions  and  where  , the composite function, , which is pronounced as “  after ”, is
defined as

The image is obtained in two steps. First,  is obtained. Next, it is passed to  to obtain the final result. It works like connecting
two machines to form a bigger one, see first figure below. We can also use an arrow diagram to provide another pictorial view, see
second figure below.

Numeric value of  can be computed in two steps. For example, to compute , we first compute the value of 
, and then the value of . To find the algebraic description of , we need to compute and simplify the formula

for . In this case, it is often easier to start from the “outside” function. More precisely, start with , and write the
intermediate answer in terms of , then substitute in the definition of  and simplify the result.

f(n) = { 2n
−2n−1

 if n ≥ 0, 
 if n < 0. 

(5.5.8)

: N∪ {0} → Zf−1

f−1 n = f(m)

n = { 2m
−2m−1

 if m ≥ 0, 
 if m < 0. 

(5.5.9)

n = 2m n m = n

2

n = −2m−1 n m = −
n+1

2

: N∪ {0} → Zf−1

(n) = {f−1
2
n

−
n+1

2

 if n is even, 

 if n is odd. 
(5.5.10)

5.5.5

f : Z →N

f(n) = {−2n
2n+1

 if n < 0, 
 if n ≥ 0. 

(5.5.11)

A B f : A → B A B

f |A| = |B|

f : A → B′ g : B → C ⊆ BB′ g∘ f g f

g∘ f : A → C, (g∘ f)(x) = g(f(x)). (5.5.12)

f(x) g

(g∘ f)(x) (g∘ f)(5)
f(5) g(f(5)) (g∘ f)(x)

g(f(x)) g

f(x) f(x)
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Example 
Assume  are defined as , and . We find

Therefore,

We note that, in general, .

hands-on Exercise 

If  are defined as , and , determine  and . Do not forget to describe the
domain and the codomain

 

Example 
Define  as

and . Find .

Solution

Since  is a piecewise-defined function, we expect the composite function  is also a piecewise-defined function. It is
defined by

5.5.5

f , g : R →R f(x) = x2 g(x) = 3x+1

(g∘ f)(x) = g(f(x)) = 3[f(x)] +1 = 3 +1,x2

(f ∘ g)(x) = f(g(x)) = [g(x) = (3x+1 .]2 )2
(5.5.13)

g∘ f : R →R, (g∘ f)(x) = 3 +1x2 (5.5.14)

f ∘ g : R →R, (f ∘ g)(x) = (3x+1)2 (5.5.15)

f ∘ g ≠ g∘ f

5.5.6

p, q : R →R p(x) = 2x+5 q(x) = +1x2 p ∘ q q ∘ p

5.5.6

f , g : R →R

f(x) = { 3x+1
2x+5

 if x < 0, 
 if x ≥ 0, 

(5.5.16)

g(x) = 5x−7 g∘ f

f g∘ f
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After simplification, we find , by: 

In this example, it is rather obvious what the domain and codomain are. Nevertheless, it is always a good practice to include
them when we describe a function.

hands-on Exercise 
The functions  and  are defined by

Determine 

Example 
Let  denote the set of nonzero real numbers. Suppose

Determine  and . Be sure to specify their domains and codomains.

Solution

To compute , we start with , whose domain is . Hence,  is the domain of . The result from  is a number in 
. The interval  contains positive numbers only, so it is a subset of . Therefore, we can continue our

computation with , and the final result is a number in . Hence, the codomain of  is . The image is computed
according to . We are now ready to present our answer: 
 

 by:

In a similar manner, the composite function  is defined as

Be sure you understand how we determine the domain and codomain of .

Identity Function relates to Inverse Functions
Recall the definition of the Identity Function:

The identity function on any nonempty set  maps any element back to itself:  

.

Theorem 
For a bijective function ,

(g∘ f)(x) = g(f(x)) = 5f(x) −7 = { 5(3x+1) −7
5(2x+5) −7

 if x < 0, 
 if x ≥ 0. 

(5.5.17)

g∘ f : R →R

(g∘ f)(x) = { 15x−2
10x+18

 if x < 0, 
 if x ≥ 0. 

(5.5.18)

5.5.7

f : R →R g : R →R

f(x) = 3x+2, and g(x) = {x2

2x−1
 if x ≤ 5, 
 if x > 5. 

(5.5.19)

f ∘ g

5.5.7

R
∗

f : →R, f(x) =R∗ 1

x
(5.5.20)

g : R → (0, ∞), g(x) = 3 +11.x2 (5.5.21)

f ∘ g g∘ f

f ∘ g g R R f ∘ g g

(0, ∞) (0, ∞) R∗

f R f ∘ g R

f(g(x)) = 1/g(x) = 1/(3 +11)x2

f ∘ g : R →R,

(f ∘ g)(x) = .
1

3 +11x2
(5.5.22)

g∘ f : (0, ∞)R∗

(g∘ f)(x) = +11.
3

x2
(5.5.23)

g∘ f

A

: A → A, (x) = x.IA IA (5.5.24)

5.5.1

f : A → B
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where  and  denote the identity function on  and , respectively.

Proof

To prove that , we need to show that  for all . Assume . Then, because 
is the inverse function of , we know that . Therefore,

which is what we want to show. The proof of  procceds in the exact same manner, and is omitted here.

Example 

Show that the functions  defined by  and  are inverse functions of each other.

Solution

The problem does not ask you to find the inverse function of  or the inverse function of . Instead, the answers are given to
you already. You job is to verify that the answers are indeed correct, that the functions are inverse functions of each other.

Form the two composite functions  and , and check whether they both equal to the identity function:

We conclude that  and  are inverse functions of each other.

hands-on Exercise 

Verify that  defined by , and  defined by , are inverse functions of each other

Theorem 
Suppose  and . Let  and  denote the identity function on  and , respectively. We have the
following results.

a.  and .
b. If both  and  are one-to-one, then  is also one-to-one.
c. If both  and  are onto, then  is also onto.
d. If   is bijective, then .

Proof of (a)

To show that , we need to show that  for all . This follows from direct computation:

The proofs of  and (b)–(d) are left as exercises.

 

Summary and Review
A bijection is a function that is both one-to-one and onto.
The inverse of a bijection  is the function   with the property that

In brief, an inverse function reverses the assignment rule of . It starts with an element  in the codomain of , and recovers the
element  in the domain of  such that .

∘ f = , and f ∘ = ,f−1 IA f−1 IB (5.5.25)

iA iB A B

∘ f =f−1 IA ( ∘ f)(a) = af−1 a ∈ A f(a) = b f−1

f (b) = af−1

( ∘ f)(a) = (f(a)) = (b) = a,f−1 f−1 f−1 (5.5.26)

f ∘ =f−1 IB

5.5.8

f , g : R →R f(x) = 2x+1 g(x) = (x−1)1
2

f g

f ∘ g g∘ f

(f ∘ g)(x) = f(g(x)) = 2g(x) +1 = 2 [ (x−1)] +1 = x,1
2

(g∘ f)(x) = g(f(x)) = [f(x) −1] = [(2x+1) −1] = x.1
2

1
2

(5.5.27)

f g

5.5.8

f : R →R
+ f(x) = ex g : →RR

+ g(x) = lnx

5.5.2

f : A → B g : B → C IA IB A B

f ∘ = fIA ∘ f = fIB
f g g∘ f
f g g∘ f

g∘ f (g∘ f = ∘)−1 f−1 g−1

f ∘ = fIA (f ∘ )(a) = f(a)IA a ∈ A

(f ∘ )(a) = f( (a)) = f(a).IA IA (5.5.28)

∘ f = fIB

f : A → B : B → Af−1

f(x) = y ⇔ x = (y).f−1 (5.5.29)

f y f

x f f(x) = y
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Given , the composition of two functions  and  is the function  defined by 
.

If  is bijective, then  and .
To check whether  and  are inverse of each other, we need to show that

a.  for all , and
b.  for all .

 

Exercises 

Exercise 
Find the inverse of each of the following bijections.

a. , .
b. , .
c. , .

Solution

(a) , 

Exercise 
Find the inverse of the function  defined by .

Exercise 
The images of the bijection  are given below.

Find its inverse function.

Solution

The images under  are given below.

Exercise 

The function  is defined by . Determine . Simplify your answer as much as possible.

Exercise 

The functions  are defined by  and . Evaluate .

Solution

We do not need to find the formula of the composite function, as we can evaluate the result directly: 
.

Exercise 
The functions  are defined by

⊆ BB′ f : A → B′ g : B → C g∘ f : A → C

(g∘ f)(x) = g(f(x))
f : A → B ∘ f =f−1 IA f ∘ =f−1 IB

f : A → B g : B → A

(g∘ f)(x) = g(f(x)) = x x ∈ A

(f ∘ g)(y) = f(g(y)) = y y ∈ B

5.5.1

u : Q→Q u(x) = 3x−2
v : Q−{1} →Q−{2} v(x) = 2x

x−1

w : Z → Z w(n) = n+3

: Q→Qu−1 (x) = (x+2)/3u−1

5.5.2

r : (0, ∞) →R r(x) = 4 +3 lnx

5.5.3

α : {1, 2, 3, 4, 5, 6, 7, 8} → {a, b, c, d, e, f , g,h}

x

α(x)

1

g

2

a

3

d

4

h

5

b

6

e

7

f

8

c
(5.5.30)

: {a, b, c, d, e, f , g,h} → {1, 2, 3, 4, 5, 6, 7, 8}α−1

x

(x)α−1

a

2

b

5

c

8

d

3

e

6

f

7

g

1

h

4
(5.5.31)

5.5.4

h : (0, ∞) → (0, ∞) h(x) = x+ 1
x h ∘ h

5.5.5

g, f : R →R f(x) = 1 −3x g(x) = +1x2 f(g(f(0)))

f(g(f(0))) = f(g(1)) = f(2) = −5

5.5.6

f , g : Z → Z
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Determine 

Exercise 

Describe .

a. , ; , .
b. , ; , .
c. , ; , .
d. , ;  .
e. , ; , .

Solution

(a) , 

(b) , 

Exercise 
If  and  are functions and  is one-to-one, must  be one-to-one? Prove or give a counter-example.

Exercise 

If  and  are functions and  is onto, must  be onto? Prove or give a counter-example.

Solution

No.  Consider  by  and   by  
Then  is defined by    Clearly  is onto, while  is not onto.

Exercise 
If  and  are functions and  is one-to-one, must  be one-to-one? Prove or give a counter-example.

Exercise 

If  and  are functions and  is onto, must  be onto? Prove or give a counter-example.

Answer

Yes, if  and  are functions and  is onto, then  must be onto.

Proof

If  is not onto, then  such that there is no  such that  
However, since  is onto, we know  such that    This means . 

 and ; let  and now there is a  such that  
Since every element in set  does have a pre-image in set , by the definition of onto,  must be onto.

 

Exercise 
Given the bijections  and , find ,  and .

a. , ; , .
b. , ; , .
c. , ; , .

f(n) = { and g(n) = {2n−1
2n

 if n ≥ 0 
 if n < 0 

n+1
3n

 if n is even 
 if n is odd 

(5.5.32)

g∘ f

5.5.7

g∘ f

f : Z →N f(n) = +1n2 g : N →Q g(n) = 1
n

f : R → (0, 1) f(x) = 1/( +1)x2 g : (0, 1) → (0, 1) g(x) = 1 −x

f : Q−{2} →Q
∗ f(x) = 1/(x−2) g : →Q

∗
Q

∗ g(x) = 1/x
f : R → [ 1, ∞) f(x) = +1x2 g : [ 1, ∞) → [ 0, ∞) g(x) = x−1

− −−−−
√

f : Q−{10/3} →Q−{3} f(x) = 3x−7 g : Q−{3} →Q−{2} g(x) = 2x/(x−3)

g∘ f : Z →Q (g∘ f)(n) = 1/( +1)n2

g∘ f : R → (0, 1) (g∘ f)(x) = /( +1)x2 x2

5.5.8

f : A → B g : B → C g∘ f g

5.5.9

f : A → B g : B → C g∘ f f

f : {2, 3} → {a, b, c} {(2, a), (3, b)} g : {a, b, c} → {5} {(a, 5), (b, 5), (c, 5)}.
f ∘ g : {2, 3} → {5} {(2, 5), (3, 5)}. f ∘ g f

5.5.10

f : A → B g : B → C g∘ f f

5.5.11

f : A → B g : B → C g∘ f g

f : A → B g : B → C g∘ f g

g ∃c ∈ C b ∈ B g(b) = c.
g∘ f ∃a ∈ A (g∘ f)(a) = c. g(f(a)) = c

f(a) ∈ B g(f(a)) = c b = f(a) b ∈ B g(b) = c.
C B g

5.5.12

f g f ∘ g (f ∘ g)−1 ∘g−1 f−1

f : Z → Z f(n) = n+1 g : Z → Z g(n) = 2 −n

f : Q→Q f(x) = 5x g : Q→Q g(x) = x−2
5

f : Q−{2} →Q−{2} f(x) = 3x−4 g : Q−{2} →Q−{2} g(x) = x
x−2
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Exercise 
Prove part (b) of Theorem 5.5.2.

Statement of Theorem 5.5.2b

Given  and , if both  and  are one-to-one, then  is also one-to-one.

Proof

Suppose  for some   WMST  
By definition of composition of functions, we have

  
 and   Let  and  Substituting into equation 5.5.3, 

 
Since  is one-to-one, we know  by definition of one-to-one. Since   we have  
Now, since  is one-to-one, we know  by definition of one-to-one. 
Thus we have demonstrated if  then  and therefore by the definition of one-to-one, 
is one-to-one.

Exercise 
Prove part (c) of Theorem 5.5.2

Exercise 
Prove part (d) of Theorem 5.5.

 

This page titled 5.5: Inverse Functions and Composition is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Harris Kwong (OpenSUNY) .

5.5.13

f : A → B g : B → C f g g∘ f

(g∘ f)( ) = (g∘ f)( )a1 a2 , ∈ A.a1 a2 = .a1 a2

g(f( )) = g(f( )).a1 a2 (5.5.33)

f( ) ∈ Ba1 f( ) ∈ B.a2 = f( )b1 a1 = f( ).b2 a2

g( ) = g( ).b1 b2 (5.5.34)

g =b1 b2 =b1 b2 f( ) = f( ).a1 a2

f =a1 a2

(g∘ f)( ) = (g∘ f)( )a1 a2 =a1 a2 g∘ f

5.5.14

5.5.15
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5.6: Infinite Sets and Cardinality

Preliminaries

 is an infinite set and is the same as 

In this section, we will see how the the Natural Numbers are used as a standard to test if an infinite set is "countably infinite".

Recall: a one-to-one correspondence between two sets is a bijection from one of those sets to the other. A bijection is a function
that is one-to-one and onto.

 

Finite Sets 

Finite sets are either empty or have  elements.  If a set has  elements, there exists a one-to-one correspondence with the set of
natural numbers,  where 

For example,  can be put into a one-to-one correspondence with .  One such function is 

If set  has  elements, then .  Also 

Infinite Sets

An infinite set is a non-empty set which cannot be put into a one-to-one correspondence with  for any .

Cardinality 
Cardinality is transitive (even for infinite sets).

Same Cardinality

If set  and set  have the same cardinality, then there is a one-to-one correspondence  from set  to set .

For a finite set, the cardinality of the set is the number of elements in the set.

Example 

Consider sets  and .   and 

Since , they have the same cardinality and we can set up a one-to-one correspondence such as:

Theorem 
An infinite set and one of its proper subsets could have the same cardinality.

An example:

The set of integers  and its subset, set of even integers  

N = {1, 2, 3, 4, . . . } is the set of Natural Numbers, also known as the Counting Numbers. (5.6.1)

N .Z+

{1, 2, 3, . . . ,n} is a FINITE set of natural numbers from 1 to n. (5.6.2)

n n

{1, 2, 3, . . . ,n} n ∈ N.

{p, q, r} {1, 2, 3}
p → 1 q → 2 r → 3.

S n |S| = n |∅| = 0.

{1, 2, 3, . . . ,n} n ∈ N

For all sets A,B,C,  if |A| = |B| and |B| = |C| then |A| = |C| (5.6.3)

A B A B

5.6.1

P Q P = {olives, mushrooms, broccoli, tomatoes} Q = {Jack, Queen, King, Ace}.

|P | = 4 and |Q| = 4

olives →  Jack (5.6.4)

mushrooms →  Ace (5.6.5)

broccoli →  Queen (5.6.6)

tomatoes →  King (5.6.7)

5.6.1

Z E = {… −4, −2, 0, 2, 4, …}.
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 The function  given by  is one-to-one and onto.  
 
So, even though         
 
(This is an example, not a proof.  It can be shown that this function is well-defined and a bijection.)

 Countably and Uncountably Infinite

Countably Infinite

A set  is countably infinite if and only if set  has the same cardinality as  (the natural numbers).

If set  is countably infinite, then 

Furthermore, we designate the cardinality of countably infinite sets as    ("aleph null").

Countable

A set is countable if and only if it is finite or countably infinite.

Uncountably Infinite

A set that is NOT countable is uncountable or uncountably infinite.

Example 

 is countable.

 
Initial thoughts

Thinking of how to match the natural numbers to the integers, I see how the even natural numbers could be used for the
positive integers, like this: 

 
However, I realize zero will need a preimage, so I can adjust the function a bit: 

 
That takes care of the positive integers and zero. 
 
For the negative integers, I need to use the odd natural numbers to get: 

 
Now I need to come up with a function to accomplish this mapping to the negative integers, and after some thinking, I come
up with  
 
These will need to fit together in a piece-wise function, with one piece if  is even and the other piece if  is odd.

Proof

f : Z → E f(n) = 2n

E ⊂Z, |E| = |Z|.

A A N

A |A| = |N|.

ℵ0

|A| = |N| = .ℵ0

5.6.2

Z

2 → 1 4 → 2 6 → 3 8 → 4  etc.            by f(n) = .
n

2
(5.6.8)

2 → 0 4 → 1 6 → 2 8 → 3  etc.            by f(n) = .
n−2

2
(5.6.9)

1 → −1 3 → −2 5 → −3 7 → −4  etc.. (5.6.10)

f(n) = − .
n+1

2

n n

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/28694?pdf


5.6.3 https://math.libretexts.org/@go/page/28694

Define      by      

 is well-defined: 
Case 1:  is even.   and since  is even,  for some integer , by definition of even. 

Now, . Because the integers are closed under subtraction,  so  
 
 Case 2:  is odd.   and since  is odd,  for some integer , by definition of odd.

Now, . Because the integers are closed under addition and multiplication,  so 
 

 
By the Parity Property,  must be either even or odd, so we have shown for all natural numbers ,  thus  is well-
defined. 
 

 is one-to-one: 
Let  Since ,  are either both non-negative or both
negative.  If they are non-negative, then  are even and if they are negative, then  are odd. 
Case 1:  are non-negative,  are even.    Then    (by
algebra). 
Case 2:  are negative,  are odd.    Then    (by
algebra). 
In both cases, if  and so, by definition of one-to-one,  is one-to-one.  
 

 is onto: 
Let .  We must show there is an element in  whose image is y. 
Case 1:  is non-negative; note:  is even.  Choose  Since integers are closed under addition and multiplication, 

 is an integer.  Furthermore, since .  Thus   
  

 
Case 2:  is negative; note:  is odd.  Choose  Since integers are closed under subtraction and multiplication, 

 is an integer.  Furthermore, since  The smallest odd integer
greater than  is  , thus   

  
 
By the Trichotomy Property,  is must be non-negative or negative, so we have shown for an arbitrary element  of the
codomain, there exists an element in  whose image is y and so, by definition of onto,  is onto.  
 
Since  is a well-defined, one-to-one, onto function, we have demonstrated a one-to-one correspondence from   Thus

 and therefore the set of integers,  is countable.

Theorem 
Any subset of a countable set is countable.

If  is countably infinite and  then  is countable.

Proof

If  is an finite set, then it is countable.  Consider the case that  is an infinite subset of . Since  is countably infinite, it
can be enumerated: . Let  be the th smallest index such that . Then 

 and hence is countably infinite.

Corolary 

f : N → Z f(n) = {
n−2

2

−
n+1

2

if n is even

if n is odd

f

n f(n) = n−2
2

n n = 2k k

f(n) = = k−1
2k−2

2
k−1 ∈ Z f(n) ∈ Z.

n f(n) = −
n+1

2
n n = 2j+1 j

f(n) = − = −j−1
2j+1+1

2
−j−1 ∈ Z

f(n) ∈ Z.

n n f(n) ∈ Z, f

f

f( ) = f( ) for some  , ∈ N.x1 x2 x1 x2 f( ) = f( )x1 x2 f( ) and f( )x1 x2

 and x1 x2  and x1 x2

f( ) and f( )x1 x2  and x1 x2 = .
−2x1

2

−2x2

2
−2 = −2,  so  =x1 x2 x1 x2

f( ) and f( )x1 x2  and x1 x2 − = − .
+1x1

2

+1x2

2
+1 = +1,  so  =x1 x2 x1 x2

f( ) = f( ) then  =x1 x2 x1 x2 f

f

y ∈ Z N

y n n = 2y+2.
2y+2 y ≥ 0, 2y ≥ 0 2y+2 > 0 so 2y+2 ∈ Z

+ n ∈ N.

f(n) = f(2y+2) = = y.
2y+2−2

2

y n n = −2y−1
−2y−1 y < 0, −2y > 0, −2y−1 > −1.

−1 1 n ∈ N.

f(n) = f(−2y−1) = − = = y.
−2y−1+1

2

2y

2

y y,
N f

f N to Z.
|N| = |Z| Z,

5.6.2

S A ⊆ S A

A A S S

S = { , , , …}x0 x1 x2 ni i ∈ Axni
A = { , , , …}xn0 xn1 xn2

5.6.3
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A set with an uncountable subset is uncountable.

Theorem 

 is countable.

Sketch of a Proof

There is a nice proof you may have seen where all the fractions are listed in an endless matrix and it can be seen that a path
can be drawn to cover all the fractions.  This shows you can "line up" the rational numbers, and thus they can be "tagged" 

 and so the set is countable. 

Theorem 

 is uncountable.

Proof

We can show the set of real numbers in the interval  are uncountable as follows: 
Suppose the real numbers in the interval  are countable.  Then they can be written in a list, as the 1st, 2nd, etc. 
Write this (infinite) list, and as it's written, we will create a number that is NOT on that list. 
For example: 
1st number:   0.345103592.....           our number that we are creating 0.0  
2nd number:  0.051023237.....           our number that we are creating 0.00 
3rd number:   0.840729312.....           our number that we are creating 0.001  
4th number:   0.859025839.....           our number that we are creating 0.0011 
5th number:   0.777888222.....           our number that we are creating 0.00110 
6th number:   0.001101111.....           our number that we are creating 0.001100  
7th number:   0.001100000.....           our number that we are creating 0.0011001 
 
Our scheme is to put a zero or a one in the  position depending on the digit in the  position of the  number in the list. 
So, for the second number on the list, we see the second digit is a 5, and we choose a 0 for the second digit of our number
being created. 
So, for the third number on the list, we see the third digit is a 0, and we choose a 1 for the third digit of our number being
created. 
(We choose a 0 unless the digit we are comparing to is a 0 and then we choose a 1.) 
Do you see that the number being created will never be on the list of real numbers?
 
More formally, if we describe the "wannabe" list of real numbers in the interval  using subscripts for each digit:

 
 
 

etc. 
 

Then create  

 is the created number which will never be on the list. 
It is impossible to put all the real numbers in the interval  in a list (that number being created will always be left off the
list), and thus that set of numbers is uncountable. 
 
Since the interval  which is a subset of  is uncountable, then  is also uncountable (Corollary 5.6.3). 
 
This proof is known as Cantor's Diagonalization Process.  Georg Cantor was a pioneer in the field of different sizes of
infinite sets.  

5.6.4

Q

1, 2, 3, 4, 5, …

5.6.5

R

(0, 1)
(0, 1)

ith ith ith

(0, 1)

0. …a11a12a13a14a15

0. …a21a22a23a24a25

0. …a31a32a33a34a35

= {dn
1
0

if  ≠ 0 ann
if  = 0ann

d

(0, 1)

(0, 1) R R
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Transfinite Numbers

As mentioned earlier,  is used to denote the cardinality of a countable set.  Transfinite numbers are used to describe the
cardinalities of "higher & higher" infinities.

                             cardinality of countably infinite sets.

                 cardinality of the "lowest" uncountably infinite sets; also known as "cardinality of the
continuum".

                    cardinality of the next uncountably infinite sets

 

From this we see that .

Other strange math can be done with transfinite numbers such as 

The proof that a set cannot be mapped onto its power set is similar to the Russell paradox, named for Bertrand Russell.

The continuum hypothesis is the statement that there is no set whose cardinality is strictly between that of . The
continuum hypothesis actually started out as the continuum conjecture, until it was shown to be consistent with the usual axioms
of the real number system (by Kurt Gödel in 1940), and independent of those axioms (by Paul Cohen in 1963).

Summary and Review
A bijection (one-to-one correspondence), a function that is both one-to-one and onto, is used to show two sets have the same
cardinality.
An infinite set that can be put into a one-to-one correspondence with  is countably infinite.
Finite sets and countably infinite are called countable.
An infinite set that cannot be put into a one-to-one correspondence with  is uncountably infinite.

 are countably infinite sets.
 is an uncountably infinite set.

 

Exercises 

Exercise 
 

Solution

 

Exercise 

text needed

Exercise 

text needed

Solution

text needed

Exercise 
text needed

ℵ0

= |N| = |Z| = |Q|ℵ0

= |R| = |(0, 1)| = |P(N)|ℵ1

= |P(R)| = |P(P(N))|ℵ2

=2ℵ0 ℵ1

+ = .ℵ1 ℵ0 ℵ1

N and R

N

N

Z and Q
R

|N| = ℵ0

|R| = ℵ1

5.6.1

5.6.2

5.6.3

5.6.4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/28694?pdf


5.6.6 https://math.libretexts.org/@go/page/28694

Exercise 
text needed

Solution

text needed

Exercise 

text needed

Exercise 

text needed

Solution

text needed

Exercise 
text needed

Exercise 

text needed

Solution

text needed

Exercise 
text needed

Exercise 

text needed

Proof

text needed

 

Exercise 

text needed

Exercise 
text needed

 
Proof

text needed

Exercise 

text needed

5.6.5

5.6.6

5.6.7

5.6.8

5.6.9

5.6.10

5.6.11

5.6.12

5.6.13

5.6.14
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CHAPTER OVERVIEW

6: Relations
6.1: Relations on Sets
6.2: Properties of Relations
6.3: Equivalence Relations and Partitions

This page titled 6: Relations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong (OpenSUNY) .

https://libretexts.org/
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/6%3A_Relations/6.1%3A_Relations_on_Sets
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/6%3A_Relations/6.2%3A_Properties_of_Relations
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/6%3A_Relations/6.3%3A_Equivalence_Relations_and_Partitions
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/6%3A_Relations
https://creativecommons.org/licenses/by-nc-sa/
http://home.fredonia.edu/math/kwong_h
https://textbooks.opensuny.org/


6.1.1 https://math.libretexts.org/@go/page/26337

6.1: Relations on Sets

Definition: Relation
A relation from a set  to a set  is a subset of . Hence, a relation  consists of ordered pairs , where  and 

. If , we say that is related to , and we also write .

Remark

We can also replace  by a symbol, especially when one is readily available. This is exactly what we do in, for example, . To
say it is not true that , we can write . Likewise, if , then  is not related to , and we could write . But
the slash may not be easy to recognize when it is written over an uppercase letter. In this regard, it may be a good practice to avoid
using the slash notation over a letter. Alternatively, one may use the “bar” notation  to indicate that  and  are not related.

Example 

Define , hence  if and only if . Obviously, saying “ ” is much clearer than “
.” If  and  are not related, we could say , or .

Since a relation is a set, we can describe a relation by listing its elements (that is, using the roster method).

Example 
Let  and . Define  if and only if . Then

We note that  consists of ordered pairs  where  and  have the same parity. Be cautious, that  and .
Hence, it is meaningless to talk about whether  or .

hands-on Exercise 
Let  and . Define  if and only if . Use the roster method to describe .

In the last example, 7 never appears as the first element (in the first coordinate) of any ordered pair. Likewise, 1, 5, 7, and 11 never
appear as the second element (in the second coordinate) of any ordered pair.

Definition
The domain of a relation  is defined as

and the range is defined as

hands-on Exercise 

Find  and , where  in Hands-On Exercise 1.

A relation  can be displayed graphically on an arrow graph, also called digraph (for directed graph). Represent the
elements from  and  by vertices or dots, and use arrows (also called directed edges or arcs) to connect two vertices if the
corresponding elements are related. The figure below displays a graphical representation of the relation in Example 2.

A B A ×B R (a, b) a ∈ A

b ∈ B (a, b) ∈ R a R b

R a < b

a < b a ≮ b (a, b) ∉ R a b aR b/

a R b
¯ ¯¯̄¯̄¯̄¯̄

a b

6.1.1

R = {(a, b) ∈ ∣ a < b}R2 (a, b) ∈ R a < b a < b

a R b a b (a, b) ∉ R a ≮ b

6.1.2

A = {1, 2, 3, 4, 5, 6} B = {1, 2, 3, 4} (a, b) ∈ R (a −b) mod 2 = 0

R = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4), (5, 1), (5, 3), (6, 2), (6, 4)}. (6.1.1)

R (a, b) a b 1 ≤ a ≤ 6 1 ≤ b ≤ 4
(1, 5) ∈ R (1, 5) ∉ R

6.1.1

A = {2, 3, 4, 7} B = {1, 2, 3, … , 12} a S b a ∣ b S

R ⊆ A ×B

domain of R = {a ∈ A ∣ (a, b) ∈ R for some b ∈ B}, (6.1.2)

range of R = {b ∈ B ∣ (a, b) ∈ R for some a ∈ A}. (6.1.3)

6.1.5

domain of S range of S S

R ⊆ A ×B

A B
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hands-on Exercise 

The courses taken by John, Mary, Paul, and Sally are listed below.

John: MATH 211, CSIT 121, MATH 220

Mary: MATH 230, CSIT 121, MATH 212

Paul: CSIT 120, MATH 230, MATH 220

Sally: MATH 211, CSIT 120

Represent, using an arrow graph, the relation  defined as  if student  is taking course .

Summary and Review
Relations are generalizations of functions. A relation merely states that the elements from two sets  and  are related in a
certain way.
More formally, a relation is defined as a subset of .
The domain of a relation is the set of elements in  that appear in the first coordinates of some ordered pairs, and the image or
range is the set of elements in  that appear in the second coordinates of some ordered pairs.
For brevity and for clarity, we often write  if .
Under this convention, the mathematical notations , , , , and their like, can be regarded as relational operators.

Exercises 

Exercise 
Let  where 

Define the relation  on the set  as 

True or False?

(a)  

(b)  

(c)  

(d)  

(e)  

(f) 

(g) 

Solution

(a) True  (b) False  (c) True (d) True (e) False  (f) False  (g) True

Exercise 
Let  where 

Define the relation  on the set  as 

(a) List all the elements of  that are related to 

(b) List all the elements of  that   is related to

Exercise 
Write out the relation  as a set of ordered pairs. , where

6.1.7

R a R b a b

A B

A ×B

A

B

x R y (x, y) ∈ R

≤ ≥ = ⊆

6.1.1

A = { , , , , }A1 A2 A3 A4 A5 = {1} = {5, 6, 7} = {1, 2, 3} = {4} = {10, 11}.A1 A2 A3 A4 A5

R A R  iff | | ≥ | |.Ai Aj Ai Aj

RA2 A3

RA1 A5

RA3 A5

RA2 A1

RA5 A2

( , ) ∈ RA1 A3

( , ) ∈ RA1 A4

6.1.2

A = { , , , , }A1 A2 A3 A4 A5 = {1} = {5, 6, 7} = {1, 2, 3} = {4} = {10, 11}.A1 A2 A3 A4 A5

R A R  iff | | ≥ | |.Ai Aj Ai Aj

A .A5

A A5

6.1.3

R R : P({1, 2}) →P({1, 2})
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Solution

 

Exercise 
Represent each of the following relations from  to  using an arrow graph.

(a) 

(b) 

(c) 

Exercise 
Find the domain and image of each relation in Problem Exercise 4.

Solution

(a) .

(b) .

(c) , .

 

Exercise 

Represent each of the following relations from  to  using an arrow graph.

(a) 

(b) 

(c)  

Exercise 

Find the domain and image of each relation in Problem 6.

Solution

(a) , .

(b) .

(c) .

 

 

Exercise 

Create the arrow graph that represents the relation  defined on  by

(S, T ) ∈ R ⇔ S ∩ T = ∅. (6.1.4)

{(∅, ∅), (∅, {1}), ({1}, ∅), (∅, {2}), ({2}, ∅), (∅, {1, 2}), ({1, 2}, ∅), ({1}, {2}), ({2}, {1})}

6.1.4

{1, 2, 3, 6} {1, 2, 3, 6}

{(x, y) ∣ x = y}

{(x, y) ∣ x ≠ y}

{(x, y) ∣ x < y}

6.1.5

domain = range = {1, 2, 3, 6}

domain = range = {1, 2, 3, 6}

domain = {1, 2, 3} range = {2, 3, 6}

6.1.6

{1, 2, 3, 6} {1, 2, 3, 6}

{(x, y) ∣ ≤ y}x2

{(x, y) ∣ x divides y}

{(x, y) ∣ x +y is even }

6.1.7

domain = {1, 2} range = {1, 2, 3, 6}

domain = range = {1, 2, 3, 6}

domain = range = {1, 2, 3, 6}

6.1.8

S {1, 2, 4, 5, 10, 20}

x S y ⇔ (x < y and x divides y). (6.1.5)
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Exercise 
Answer these questions about the relation  defined on  by

True or False?

(a) If  then  for all  

(b)  for all 

(c) If   and  then   for all  

Solution

(a) True  (b) False  (c) True

 

Exercise 

For a relation , instead of using two rows of vertices in a digraph, we can use a digraph on the vertices that
represent the elements of . Hence, it is possible to have two directed arcs between a pair of vertices, and a loop may appear
around a vertex  if . Write the set of ordered pairs for the relation represented by the following arrow diagram:

This page titled 6.1: Relations on Sets is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

6.1.9

S {1, 2, 4, 5, 10, 20}

x S y ⇔ (x < y and x divides y). (6.1.6)

(x, y) ∈ S, (y, x) ∉ S, x, y ∈ S.

(x, x) ∈ S, x ∈ S.

(x, y) ∈ S, (y, z) ∈ S, (x, z) ∈ S, x, y, z ∈ S.

6.1.10

R ⊆ A ×A

A

x (x, x) ∈ R
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6.2: Properties of Relations
Note: If we say  is a relation "on set " this means  is a relation from  to ; in other words, .

We will define three properties which a relation might have.

Definition: Reflexive Property

A relation  on  is  reflexive  if and only if for all , .

example: consider  by . Since  for all  the relation  is reflexive.

Definition: Symmetric Property
A relation  on  is  symmetric if and only if for all , if , then .

Clearly the relation  is symmetric since   However, divides is not symmetric, since  but .

Definition: Transitive Property
A relation  on  is  transitive if and only if for all , if  and , then .

example: consider  by .  Since if  and  then  is true for all , the
relation  is transitive.

 

Example 
 is a relation on all people on Earth defined by  if and only if  is a brother of 

Reflexive?

No, Jamal is not a brother to himself.

 
Symmetric?

No, Jamal can be the brother of Elaine, but Elaine is not the brother of Jamal.

 
Transitive?

Yes, if  is the brother of  and  is the brother of  , then  is the brother of 

Example 
Consider the relation  on the set  defined by

Reflexive?

No, since , the relation is not reflexive.

 
Symmetric?

No, we have  but , thus  is not symmetric.

 
Transitive?

Yes. By going through all the ordered pairs in , we verify that whether  and , we always have 
 as well. This shows that  is transitive.

R A R A A R ⊆ A ×A

R A a ∈ A aRa

D : Z → Z xDy ⟺ x|y a|a a ∈ Z D

R A a, b ∈ A aRb bRa

= x = y → y = x. 5 ∣ 10 10 ∤ 5

R A a, b, c ∈ A aRb bRc aRc

G : R → R xGy ⟺ x > y a > b b > c a > c a, b, c ∈ R

G

6.2.1

B xBy x y.

X Y Y Z X Z.

6.2.2

R A = {1, 2, 3, 4}

R = {(1, 1), (2, 3), (2, 4), (3, 3), (3, 4)}. (6.2.1)

(2, 2) ∉ R

(2, 3) ∈ R (3, 2) ∉ R R

R (a, b) ∈ R (b, c) ∈ R

(a, c) ∈ R R

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/31164?pdf
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/6%3A_Relations/6.2%3A_Properties_of_Relations


6.2.2 https://math.libretexts.org/@go/page/31164

Example 

Define the relation  on the set  according to

Reflexive?

No, since , the relation is not reflexive.

 
Symmetric?

Yes.  Since we have only two ordered pairs, and it is clear that whenever , we also have . Hence,  is
symmetric.

 
Transitive?

Since  and , but , the relation  is not transitive.

hands-on exercise 

Define the relation  on the set  as

Determine whether  is reflexive, symmetric, or transitive.

hands-on exercise 
The relation  on the set  is defined as

Determine whether  is reflexive, symmetric, or transitive.

Example 
Here are two examples from geometry. Let  be the set of triangles that can be drawn on a plane. Define a relation  on  such
that  if and only if the two triangles are similar. It is easy to check that  is reflexive, symmetric, and transitive.

Let  be the set of all the (straight) lines on a plane. Define a relation  on  according to  if and only if  and 
 are parallel lines. Again, it is obvious that  is reflexive, symmetric, and transitive.

Example 
The relation  on  is defined as

Since , the relation  is reflexive.

The relation  is symmetric, because if  can be written as  for some nonzero integers  and , then so is its reciprocal ,
because .

If , then  and  for some nonzero integers , , , and . Then . Hence,  is
transitive.

Therefore, the relation  is reflexive, symmetric, and transitive.

6.2.3

S A = {1, 2, 3, 4}

S = {(2, 3), (3, 2)}. (6.2.2)

(2, 2) ∉ R

(a, b) ∈ S (b, a) ∈ S S

(2, 3) ∈ S (3, 2) ∈ S (2, 2) ∉ S S

6.2.1

R R

a R b ⇔ a ≤ b. (6.2.3)

R

6.2.2

S R∗

a S b ⇔ ab > 0. (6.2.4)

S

6.2.4

T S T

( , ) ∈ ST1 T2 S

L P L ( , ) ∈ PL1 L2 L1

L2 P

6.2.5

T R∗

a T b ⇔ ∈ Q.
a

b
(6.2.5)

= 1 ∈ Qa
a

T

T a

b

m
n m n b

a

=b
a

n
m

, ∈ Qa

b

b
c =a

b

m
n =b

c

p

q m n p q = ⋅ = ∈ Qa
c

a

b

b
c

mp

nq T

T
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Definition: Equivalence Relation
A relation is an equivalence relation if and only if the relation is reflexive, symmetric and transitive.

Example 
The relation  on  is defined as

Is  an equivalence relation?

Answer

If , it is obvious that  because . Thus,  is symmetric. 
However,   is not reflexive, because . 
Therefore  is not an equivalence relation

hands-on exercise 
Determine whether the following relation  on some universal set  is an equivalence relation:

Example 

Consider the relation  on the set  is defined according to

Is  an equivalence relation?

Answer

The relation  is reflexive, because  and . 
It is clearly symmetric, because  always implies . 
Because  consists of only two ordered pairs, both of them in the form of ,  is transitive.  
Therefore,  is an equivalence relation.

hands-on exercise 
Determine whether the following relation  on a nonempty set of individuals in a community is an equivalence relation:

Example  Congruence Modulo 5

Consider the relation  on  defined by .

Note:  (1)  is called Congruence Modulo 5.  (2) We have proved  .

Prove  is an equivalence relation.

Proof:

Reflexive: Consider any integer .  .   by the definition of divides since  and . 
So,  thus  by definition of . 

 is reflexive. 
 
Symmetric: Let  such that   We must show that  
Since ,   by definition of  By definition of divides, there exists an integer  such that

6.2.6

U Z

a U b ⇔ 5 ∣ (a +b). (6.2.6)

U

5 ∣ (a +b) 5 ∣ (b +a) a +b = b +a U

U 5 ∤ (1 +1)
U

6.2.3

V U

(S, T ) ∈ V ⇔ S ⊆ T . (6.2.7)

6.2.7

V A = {0, 1}

V = {(0, 0), (1, 1)}. (6.2.8)

V

V (0, 0) ∈ V (1, 1) ∈ V

(a, b) ∈ V (b, a) ∈ V

V (a, a) V

V

6.2.4

W

a W b ⇔ a and b have the same last name. (6.2.9)

6.2.8

R Z xRy ⟺ 5 ∣ (x −y)

R a mod 5 = b mod 5 ⟺ 5 ∣ (a −b)

R

a a −a = 0 5 ∣ 0 5(0) = 0 0 ∈ Z

5 ∣ (a = a) aRa R

∴ R

a, b ∈ Z aRb. bRa.
aRb 5 ∣ (a −b) R. k

5k = a −b.
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By algebra:

 
 since the set of integers is closed under multiplication. So,  by definition of divides.  by definition of

 
 is symmetric. 

 
Transitive: Let  such that  and   We must show that  
  and  by definition of  By definition of divides, there exists an integers  such that

Adding the equations together and using algebra:

   since the set of integers is closed under addition. So,  by definition of divides.  by definition of 
 

 is transitive. 
 
Thus, by definition of equivalence relation,  is an equivalence relation.

Summary and Review
A relation from a set  to itself is called a relation on set .
Given any relation  on a set , we are interested in three properties that  may or may not have.
The relation  is said to be reflexive if every element is related to itself, that is, if  for every .
The relation  is said to be symmetric if the relation can go in both directions, that is, if  implies  for any .
Finally, a relation is said to be transitive if we can pass along the relation and relate two elements if they are related via a third
element.
More precisely,  is transitive if  and  implies that .

Exercises

Exercise 

Let  be a nonempty set and define the relation  on  by

It is clear that  is symmetric.

a) Explain why  is not reflexive.

b) Is  transitive? Explain.

c) Let . Draw the directed (arrow) graph for .

Answer:

(a) Since set  is not empty, there exists at least one element in , call one of the elements . The power set must include 
 and  and thus is not empty.  So we have shown an element which is not related to itself; thus  is not

reflexive. 

−5k = b −a

5(−k) = b −a.

−k ∈ Z 5 ∣ (b −a) bRa

R.
∴ R

a, b, c ∈ Z aRb bRc. aRc.
5 ∣ (a −b) 5 ∣ (b −c) R. j, k

5j = a −b.

5k = b −c.

5j+5k = a −c

5(j+k) = a −c.

j+k ∈ Z 5 ∣ (a −c) aRc

R.
∴ R

R

A A

R A R

R x R x x ∈ A

R x R y y R x x, y ∈ A

R x R y y R z x R z

6.2.1

S A P(S)

(X, Y ) ∈ A ⇔ X ∩ Y = ∅. (6.2.10)

A

A

A

S = {a, b, c} A

S S x

{x} {x} ∩ {x} = {x} S
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(b) Consider these possible elements of the power set:  .  
and  , but . We have shown a counter example to transitivity, so  is not transitive. 
(c) Here's a sketch of some of the diagram should look: 
-There are eight elements on the left and eight elements on the right 
-This relation is symmetric, so every arrow has a matching cousin. i.e there is  and also 

. 
-The empty set is related to all elements including itself; every element is related to the empty set.

 

Exercise 

For each of these relations on , determine which of the three properties are satisfied.

a) 

b) 

Exercise 
For each of the following relations on , determine which of the three properties are satisfied.

a) 

b) 

c) 

Answer:

(a) reflexive, transitive 
(b) reflexive, symmetric, transitive 
(c) symmetric

Exercise 

For each of the following relations on , determine which of the three properties are satisfied.

a) 

b) 

Exercise 
For each of the following relations on , determine which of the three properties are satisfied.

a) 

b) 

Answer:

(a) reflexive, symmetric and transitive (try proving this!) 
(b) symmetric

Exercise 
For each of the following relations on , determine which of the three properties are satisfied.

a) 

b) 

c) 

= {w, x, y}, = {a, b}, = {w, x}S1 S2 S3 ∩ = ∅S1 S2

∩ = ∅S2 S3 ∩ ≠ ∅S1 S3 A

\{a,c\}\right arrow\{b}\}
\{b\}\right arrow\{a,c}\}

6.2.2

N −{1}

= {(x, y) ∣ x and y are relatively prime}A1

= {(x, y) ∣ x and y are not relatively prime}A2

6.2.3

N

= {(x, y) ∣ x divides y}B1

= {(x, y) ∣ x +y is even }B2

= {(x, y) ∣ xy is even }B3

6.2.4

N

= {(x, y) ∣ x +y is odd }D1

= {(x, y) ∣ xy is odd }D2

6.2.5

Z

= {(x, y) ∣ 3 divides x +2y}U1

= {(x, y) ∣ x −y is odd }U2

6.2.6

Z

= {(x, y) ∣ xy > 0}V1

= {(x, y) ∣ x −y is even }V2

= {(x, y) ∣ x is a multiple of y}V3
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6.3: Equivalence Relations and Partitions
Recall:

A relation on a set  is an equivalence relation if it is reflexive, symmetric, and transitive. We often use the tilde notation  to
denote a relation.

Also, when we specify just one set, such as   is a relation on set , that means the domain & codomain are both set .

For an equivalence relation, due to transitivity and symmetry, all the elements related to a fixed element must be related to each
other. Thus, if we know one element in the group, we essentially know all its “relatives.”

Definition: Equivalence Class

Let  be an equivalence relation on set .  For each  we denote the equivalence class of  as  defined as:

Example 

Define a relation  on  by

 Find the equivalence classes of .

Answer

Two integers will be related by  if they have the same remainder after dividing by 4.  The possible remainders are 0, 1, 2,
3.

 
 

 
 

 
 

hands-on exercise 

Define a relation  on  by

 Find the equivalence classes of .

example 
Let 

For convenience, label

Define this equivalence relation  on  by

 

Find the equivalence classes of .

A a ∼ b

a ∼ b B B

R A a ∈ A a [a]

[a] = {x ∈ A ∣ xRa}. (6.3.1)

6.3.1

∼ Z

a ∼ b ⇔ a mod 4 = b mod 4. (6.3.2)

∼

∼

[0] = {. . . , −12, −8, −4, 0, 4, 8, 12, . . . }

[1] = {. . . , −11, −7, −3, 1, 5, 9, 13, . . . }

[2] = {. . . , −10, −6, −2, 2, 6, 10, 14, . . . }

[3] = {. . . , −9, −5, −1, 3, 7, 11, 15, . . . }

6.3.1

∼ Z

a ∼ b ⇔ a mod 3 = b mod 3. (6.3.3)

∼

6.3.2

S =P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

= ∅, = {1}, = {2}, = {3}, = {1, 2}, = {1, 3}, = {2, 3},S0 S1 S2 S3 S4 S5 S6

= {1, 2, 3}.S7

∼ S

∼ ⇔ | | = | |.Si Sj Si Sj (6.3.4)

∼

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/26444?pdf
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/6%3A_Relations/6.3%3A_Equivalence_Relations_and_Partitions


6.3.2 https://math.libretexts.org/@go/page/26444

Answer

Two sets will be related by  if they have the same number of elements.  

 
 

 
 

 
 

The element in the brackets, [  ]  is called the representative of the equivalence class.  An equivalence class can be represented by
any element in that equivalence class. So, in Example 6.3.2,   This equality of equivalence
classes will be formalized in Lemma 6.3.1.

Notice an equivalence class is a set, so a collection of equivalence classes is a collection of sets.

Take a closer look at Example 6.3.1.  All the integers having the same remainder when divided by 4 are related to each other. The
equivalence classes are the sets

It is clear that every integer belongs to exactly one of these four sets. Hence,

These four sets are pairwise disjoint. From this we see that  is a partition of .

Equivalence Classes form a partition (idea of Theorem 6.3.3)
The overall idea in this section is that given an equivalence relation on set , the collection of equivalence classes forms a partition
of set  (Theorem 6.3.3).

The converse is also true: given a partition on set , the relation "induced by the partition" is an equivalence relation
(Theorem 6.3.4).

As another illustration of Theorem 6.3.3, look at Example 6.3.2.

Thus,  is a partition of set .

In order to prove Theorem 6.3.3, we will first prove two lemmas.

Lemma 

If  is an equivalence relation on , then .

Proof

Let  be an equivalence relation on  with  
First we will show  
Let  by definition of equivalence class.  Now we have  
thus  by transitivity (since  is an equivalence relation).  Since  by definition of equivalence classes. 
We have shown if , thus   by definition of subset. 
 

∼

[ ] = { }S0 S0

[ ] = { , , }S2 S1 S2 S3

[ ] = { , , }S4 S4 S5 S6

[ ] = { }S7 S7

[ ] = [ ] = [ ] = { , , }.S2 S3 S1 S1 S2 S3

[0]

[1]

[2]

[3]

=

=

=

=

{n ∈ Z ∣ n mod 4 = 0}

{n ∈ Z ∣ n mod 4 = 1}

{n ∈ Z ∣ n mod 4 = 2}

{n ∈ Z ∣ n mod 4 = 3}

=

=

=

=

4Z,

1 +4Z,

2 +4Z,

3 +4Z.

(6.3.5)

Z = [0] ∪ [1] ∪ [2] ∪ [3]. (6.3.6)

{[0], [1], [2], [3]} Z

A

A,

A

[ ] ∪ [ ] ∪ [ ] ∪ [ ] = SS0 S2 S4 S7 (6.3.7)

{[ ], [ ], [ ], [ ]} is pairwise disjoint S0 S2 S4 S7 (6.3.8)

{[ ], [ ], [ ], [ ]}S0 S2 S4 S7 S

6.3.1

R A aRb → [a] = [b]

R A aRb.
[a] ⊆ [b].

x ∈ [a],  then xRa xRa and aRb,
xRb R xRb, x ∈ [b],

x ∈ [a] then x ∈ [b] [a] ⊆ [b],
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Next we will show  
Let  by definition of equivalence class. Since , we also have  by symmetry. 
Now we have  thus  by transitivity. Since  by definition of equivalence classes. 
We have shown if , thus   by definition of subset. 
 

 by the definition of set equality.

One may regard equivalence classes as objects with many aliases. Every element in an equivalence class can serve as its
representative. So we have to take extra care when we deal with equivalence classes. Do not be fooled by the representatives, and
consider two apparently different equivalence classes to be distinct when in reality they may be identical.

Example 
Define  on a set of individuals in a community according to

We can easily show that  is an equivalence relation. Each equivalence class consists of all the individuals with the same last
name in the community. Hence, for example, Jacob Smith, Liz Smith, and Keyi Smith all belong to the same equivalence class.
Any Smith can serve as its representative, so we can denote it as, for example, Liz Smith .

Example 

Define  on  according to

Hence, two positive real numbers are related if and only if they have the same decimal parts. It is easy to verify that  is an
equivalence relation, and each equivalence class  consists of all the positive real numbers having the same decimal parts as 
has. Notice that

which means that the equivalence classes , where , form a partition of .

hands-on exercise 
Prove that the relation  in Example 6.3.4 is indeed an equivalence relation.

Lemma 

Given an equivalence relation  on set , if  then either  or 

Proof

Let   be an equivalence relation on set  with  
 
Case 1:  
In this case   or   is true. 
 
Case 2:  

 by definition of empty set & intersection. 
 and  by definition of equivalence classes.  Also since ,  by symmetry. 

We have  and , so  by transitivity. Since ,  by Lemma 6.3.1. 
In this case   or   is true. 
 
These are the only possible cases.  So, if  then either  or  
 

[b] ⊆ [a].
x ∈ [b],  then xRb aRb bRa,

xRb and bRa, xRa xRa, x ∈ [a],
x ∈ [b] then x ∈ [a] [b] ⊆ [a],

∴ [a] = [b]

6.3.3

∼

a ∼ b ⇔ a and b have the same last name. (6.3.9)

∼

[ ]

6.3.4

∼ R
+

x ∼ y ⇔ x−y ∈ Z. (6.3.10)

∼
[x] x

= [x],R
+ ⋃

x∈(0,1]

(6.3.11)

[x] x ∈ (0, 1] R

6.3.2

∼

6.3.2

R A a, b ∈ A [a] ∩ [b] = ∅ [a] = [b]

R A a, b ∈ A.

[a] ∩ [b] = ∅
[a] ∩ [b] = ∅ [a] = [b]

[a] ∩ [b] ≠ ∅
∃x(x ∈ [a] ∧x ∈ [b])
xRa xRb xRa aRx

aRx xRb aRb aRb [a] = [b]
[a] ∩ [b] = ∅ [a] = [b]

a, b ∈ A [a] ∩ [b] = ∅ [a] = [b].
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Theorem 6.3.3 and Theorem 6.3.4 together are known as the Fundamental Theorem on Equivalence Relations.

Theorem 

If  is an equivalence relation on any non-empty set , then the distinct set of equivalence classes of  forms a partition of . 

Proof

Suppose  is an equivalence relation on any non-empty set .  Denote the equivalence classes as . 
WMST  
First we will show  
If  then  belongs to at least one equivalence class,  by definition of union. 
By the definition of equivalence class, .  Thus  
Next we show . 
If , then  since  is reflexive.  Thus . 

 for some  since  is an equivalence class of . 
So,  by definition of subset.  And so,   by the definition of equality of sets. 
 
Now WMST  is pairwise disjoint. 
For any , either  or  by Lemma 6.3.2. So,  is mutually disjoint by definition of
mutually disjoint. 
 
We have demonstrated both conditions for a collection of sets to be a partition and we can conclude  
if  is an equivalence relation on any non-empty set , then the distinct set of equivalence classes of  forms a partition of 

. 

 Conversely, given a partition , we could define a relation that relates all members in the same component. This relation turns out
to be an equivalence relation, with each component forming an equivalence class. This equivalence relation is referred to as the
equivalence relation induced by .

Definition
Given  is a partition of set , the relation, ,  induced by the partition, , is defined as follows:

Example 
Consider set  with this partition:   

Find the ordered pairs for the relation , induced by the partition.

Proof

Theorem 
If  is a set with partition  and  is a relation induced by partition  then  is an equivalence relation.

Proof

Let  be a set with partition  and  be a relation induced by partition   WMST  is an
equivalence relation. 
 
Reflexive 
Let  Since the union of the sets in the partition   must belong to at least one set in  

  Since   by the definition of a relation induced by a partition. 

6.3.3

R A R A

R A , , , . . .A1 A2 A3

∪ ∪ ∪. . . = A.A1 A2 A3

∪ ∪ ∪. . . ⊆ A.A1 A2 A3

x ∈ ∪ ∪ ∪. . . ,A1 A2 A3 x Ai

x ∈ A ∪ ∪ ∪. . . ⊆ A.A1 A2 A3

A ⊆ ∪ ∪ ∪. . .A1 A2 A3

x ∈ A xRx R x ∈ [x]
[x] = ,Ai i [x] R

A ⊆ ∪ ∪ ∪. . .A1 A2 A3 ∪ ∪ ∪. . . = A,A1 A2 A3

{ , , , . . . }A1 A2 A3

i, j =Ai Aj ∩ = ∅Ai Aj { , , , . . . }A1 A2 A3

R A R

A

P

P

P = { , , , . . . }A1 A2 A3 A R P

 For all x, y ∈ A, xRy ↔ ∃ ∈ P (x ∈ ∧ y ∈ ).Ai Ai Ai (6.3.12)

6.3.5

S = {a, b, c, d} {{a, b}, {c}, {d}}.

R

R = {(a, a), (a, b), (b, a), (b, b), (c, c), (d, d)}

6.3.4

A P = { , , , . . . }A1 A2 A3 R P , R

A P = { , , , . . . }A1 A2 A3 R P . R

x ∈ A. P = A, x P .
∃i(x ∈ ).Ai x ∈ ∧x ∈ ,Ai Ai xRx
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 is reflexive. 
 
Symmetric 
Suppose    by the definition of a relation induced by a partition. 
Since  

 is symmetric. 
 
Transitive 
Suppose   

 and  by the definition of a relation induced by a partition. 
Because the sets in a partition are pairwise disjoint, either  or  
Since  belongs to both these sets,  thus   
Both  and  belong to the same set, so  by the definition of a relation induced by a partition.  

 is transitive. 
 
We have shown  is reflexive, symmetric and transitive, so  is an equivalence relation on set  

 if  is a set with partition  and  is a relation induced by partition  then  is an equivalence
relation.

 

Example 
Over , define

It is not difficult to verify that  is an equivalence relation. There are only two equivalence classes:  and , where 
contains all the positive integers, and  all the negative integers. It is obvious that .

hands-on exercise 

The relation  defined on the set  is known to be

Confirm that  is an equivalence relation by studying its ordered pairs. Determine the contents of its equivalence classes.

Example 
Consider the equivalence relation  induced by the partition

of .

(a) Write the equivalence classes for this equivalence relation.  (b) Write the equivalence relation as a set of ordered pairs. 

Answer

(a)  
  
(b) From the two 1-element equivalence classes  and , we find two ordered pairs  and  that belong to .
From the equivalence class , any pair of elements produce an ordered pair that belongs to . Therefore,

∴ R

xRy. ∃i(x ∈ ∧ y ∈ )Ai Ai

y ∈ ∧x ∈ , yRx.Ai Ai

∴ R

xRy∧ yRz.
∃i(x ∈ ∧ y ∈ )Ai Ai ∃j(y ∈ ∧ z ∈ )Aj Aj

=Ai Aj ∩ = ∅.Ai Aj

y ∩ ≠ ∅,Ai Aj = .Ai Aj

x z xRz

∴ R

R R A.
∴ A P = { , , , . . . }A1 A2 A3 R P , R

6.3.6

Z∗

= {(m,n) ∣ m,n ∈  and mn > 0}.R3 Z∗ (6.3.13)

R3 [1] [−1] [1]
[−1] = [1] ∪ [−1]Z

∗

6.3.3

S {1, 2, 3, 4, 5, 6}

S = {(1, 1), (1, 4), (2, 2), (2, 5), (2, 6), (3, 3),

(4, 1), (4, 4), (5, 2), (5, 5), (5, 6), (6, 2), (6, 5), (6, 6)}.
(6.3.14)

S

6.3.7

R

P = {{1}, {3}, {2, 4, 5, 6}} (6.3.15)

A = {1, 2, 3, 4, 5, 6}

[1] = {1} [2] = {2, 4, 5, 6} [3] = {3}

{1} {3} (1, 1) (3, 3) R

{2, 4, 5, 6} R

R = {(1, 1), (3, 3), (2, 2), (2, 4), (2, 5), (2, 6), (4, 2), (4, 4), (4, 5), (4, 6),

(5, 2), (5, 4), (5, 5), (5, 6), (6, 2), (6, 4), (6, 5), (6, 6)}.
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Summary Review
A relation  on a set  is an equivalence relation if it is reflexive, symmetric, and transitive.
If  is an equivalence relation on the set , its equivalence classes form a partition of .
In each equivalence class, all the elements are related and every element in  belongs to one and only one equivalence class.
The relation  determines the membership in each equivalence class, and every element in the equivalence class can be used to
represent that equivalence class.
In a sense, if you know one member within an equivalence class, you also know all the other elements in the equivalence class
because they are all related according to .
Conversely, given a partition of , we can use it to define an equivalence relation by declaring two elements to be related if
they belong to the same component in the partition.

Exercises 

Exercise 
Find the equivalence classes for each of the following equivalence relations  on .

a) 

b) 

Answer

(a) The equivalence classes are of the form  for some integer . For instance, , , 
, and .

(b) There are two equivalence classes: ,  and .

Exercise 

For this relation  on  defined by :

a) show  is an equivalence relation.

b) find the equivalence classes for .

Exercise 
Let  be a fixed subset of a nonempty set . Define the relation  on  by

Show that  is an equivalence relation. In particular, let  and .

a) True or false: ?

b) How about ?

c) Find 

d) Describe  for any .

Answer

(a) True

(b) False

(c) 

R A

R A A

A

R

R

A

6.3.1

∼ Z

m ∼ n ⇔ |m−3| = |n−3|

m ∼ n ⇔ m+n is even 

{3 −k, 3 +k} k [3] = {3} [2] = {2, 4}
[1] = {1, 5} [−5] = {−5, 11}

[0] =  the set of even integers  [1] =  the set of odd integers 

6.3.2

∼ Z m ∼ n ⇔ 3 ∣ (m+2n)

∼

∼

6.3.3

T S ∼ P(S)

X ∼ Y ⇔ X∩T = Y ∩T , (6.3.16)

∼ S = {1, 2, 3, 4, 5} T = {1, 3}

{1, 2, 4} ∼ {1, 4, 5}

{1, 2, 4} ∼ {1, 3, 4}

[{1, 5}]

[X] X ∈ P(S)

[{1, 5}] = {{1}, {1, 2}, {1, 4}, {1, 5}, {1, 2, 4}, {1, 2, 5}, {1, 4, 5}, {1, 2, 4, 5}}
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(d) . In other words,  if  contains the same element in , plus possibly
some elements not in .

Exercise 

For each of the following relations  on , determine whether it is an equivalence relation. For those that are, describe
geometrically the equivalence class .

1. .
2. 

Exercise 

For each of the following relations  on , determine whether it is an equivalence relation. For those that are, describe
geometrically the equivalence class .

1. 
2. 

Answer

(a) Yes, with . In other words, the equivalence classes are the straight
lines of the form  for some constant .

(b) No. For example,  and , but . Hence, the relation  is not transitive.

Exercise 

For each of the following relations  on , determine whether it is an equivalence relation. For those that are, describe
geometrically the equivalence class .

1. 
2. 

Exercise 
Define the relation  on  by

  is an equivalence relation. Describe the equivalence classes  and .

Answer

We find , and .

Exercise 

Define the relation  on  by

Show that  is an equivalence relation. Describe the equivalence classes ,  and .

Exercise 

Consider the following relation on :

This is an equivalence relation. Describe its equivalence classes.

[X] = {(X∩T ) ∪Y ∣ Y ∈ P( )}T¯¯̄̄ S ∼ X S X∩T

T

6.3.4

∼ R ×R

[(a, b)]

( , ) ∼ ( , ) ⇔ − = −x1 y1 x2 y2 y1 x2
1 y2 x2

2

( , ) ∼ ( , ) ⇔ ( −1 + = ( −1 +x1 y1 x2 y2 x1 )2 y2
1 x2 )2 y2

2

6.3.5

∼ R ×R

[(a, b)]

( , ) ∼ ( , ) ⇔ + = +x1 y1 x2 y2 x1 y2 x2 y1

( , ) ∼ ( , ) ⇔ ( − )( − ) = 0x1 y1 x2 y2 x1 x2 y1 y2

[(a, b)] = {(x, y) ∣ y = x+k for some constant k}
y = x+k k

(2, 5) ∼ (3, 5) (3, 5) ∼ (3, 7) (2, 5) ≁ (3, 7) ∼

6.3.6

∼ R ×R

[(a, b)]

( , ) ∼ ( , ) ⇔ | | +| | = | | +| |x1 y1 x2 y2 x1 y1 x2 y2

( , ) ∼ ( , ) ⇔ =x1 y1 x2 y2 x1y1 x2y2

6.3.7

∼ Q

x ∼ y ⇔ 2(x−y) ∈ Z. (6.3.17)

∼ [0] [ ]1
4

[0] = Z = { ∣ n ∈ Z}1
2

n

2
[ ] = + Z = { ∣ n ∈ Z}1

4
1
4

1
2

2n+1
4

6.3.8

∼ Q

x ∼ y ⇔ ∈ Z.
x−y

2
(6.3.18)

∼ [0] [1] [ ]1
2

6.3.9

{a, b, c, d, e}

R = {(a, a), (a, c), (a, e), (b, b), (b, d), (c, a), (c, c), (c, e),

(d, b), (d, d), (e, a), (e, c), (e, e)}.
(6.3.19)
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Answer

 

Exercise 

Each part below gives a partition of . Find the equivalence relation (as a set of ordered pairs) on 
induced by each partition.

(a) 

(b) 

(c) 

(d) 

Exercise 

Write out the relation,  induced by the partition below on the set 

Answer

Exercise 

Consider the relation,  induced by the partition on the set  shown in exercises 6.3.11 (above).

Answer these questions True or False.

(a) Every element in set  is related to every other element in set 

(b) 

(c) 

(d) Every element in set  is related to itself.

(e) The relation, , is transitive.

(f) 

(g) 

(h) 

(i) 

(j) 

 

 

[a] = {a, c, e}
[b] = {b, d}

6.3.10

A = {a, b, c, d, e, f , g} A

= {{a, b}, {c, d}, {e, f}, {g}}P1

= {{a, c, e, g}, {b, d, f}}P2

= {{a, b, d, e, f}, {c, g}}P3

= {{a, b, c, d, e, f , g}}P4

6.3.11

R A = {1, 2, 3, 4, 5, 6}.

R = {(1, 2), (2, 1), (1, 4), (4, 1), (2, 4), (4, 2), (1, 1), (2, 2), (4, 4), (5, 5), (3, 6), (6, 3), (3, 3), (6, 6)}

6.3.12

R A = {1, 2, 3, 4, 5, 6}

A A.

(2, 3) ∈ R.

(2, 1) ∈ R.

A

R

5 R 6

1 R 4

[3] = {6}

R ⊆ A×A

A∩R = ∅
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7.1: Intro, Probability and Pigeonhole Principle

Intro: What is Combinatorics?

Combinatorics studies the arrangements of objects according to some rules. The questions that can be asked include

Existence. Do the arrangements exist?
Classification. If the arrangements exist, how can we characterize and classify them?
Enumeration. How many arrangements are there?
Construction. Is there an algorithm for constructing all the arrangements?

Example 

In how many ways can five people be seated at a round table? What if a certain pair of them refuses to sit next to one another?
What if there are  people?

Example 
A binary string is a sequence of digits, each of which being 0 or 1. Let  be the number of binary strings of length  that do
not contain consecutive 1s. It is easy to check that , , and . What is the general formula for ?

Example 
The complexity of an algorithm tells us how many operations it requires. By comparing the complexity of several algorithms for
solving the same problem, we can determine which one is most efficient. Let  be the number of operations required to solve a
problem of size . If it is known that

where  and , what is the general formula for ?

Consider the number of integers from 2 to 5, inclusive.  You might think there  3 integers since .  However, if we include
the 1st and last integer, our set is  and you can see there are 4 integers.

Theorem : Counting Natural Numbers

If  then the number of integers from  to  is .

Example 
How many four-digit codes exist from  to ?

Solution

 so there are  four-digit codes from  to . 

Probability

Definition: Sample Space

A sample space is the set of all possible outcomes.  For example, the sample space for rolling a die is:

which is the set of the six possible results from tossing a die.

Definition: Event

An event is a subset of a sample space.  For example, an event for rolling two dice is: the sum is 9, i.e.

7.1.1

n

7.1.2

an n

= 2a1 = 3a2 = 5a3 an

7.1.3

bn

n

= 2 +3 , n ≥ 3,bn bn−1 bn−2 (7.1.1)

= 1b1 = 3b2 bn

5 −2 = 3

{2, 3, 4, 5}

7.1.1

m, n ∈ Z and m ≥ n n m m −n +1

7.1.4

1000 9999

9999 −1000 +1 = 9000 9000 1000 9999

1 2 3 4 5 6 (7.1.2)

3 6 6 3 4 5 5 4 (7.1.3)
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Definition: Probability for Equally Likely outcomes

If  is an event, then the probability of that event,  is:

For example, there are 36 outcomes for rolling two dice, so 

 

Since an event is a subset of the sample space, the largest number of elements in an event is the number of elements in the sample
space.

Thus the maximum probability of an event is   The smallest number of elements in an event is zero, so the minimum probability
of an event is 

 means event  will always happen.

 means event  will never happen.

Example 
Pick a card from a standard 52-card deck. What is the probability that the number of the card is

(a) a six

(b) a number less than 20

(c) a number greater than 15

Solution

(a)   
 
(b)  
 
(c) 

Pigeonhole Principle
The Pigeonhole Principle says that if you have more pigeons than pigeonholes, then at least one pigeonhole will get two pigeons.

If you have a function from a finite set to a smaller finite set, then the function cannot be one-to-one; in other words, there must be
at least two elements in the domain with the same image in the codomain.

More formally,

E P (E)

P (E) = .
the number of outcomes in E

the total number of outcomes in the sample space
(7.1.4)

P (sum of 9) = = .4
36

1
9

1.

0.

P ( ) = 1E1 E1

P ( ) = 0E2 E2

7.1.1

1
13

1

0
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Theorem  Pigeonhole Principle

If  where  and  are finite sets with , then  is not one-to-one.

Example 
Without looking, you pull socks out of a drawer that has just 5 blue socks and 5 white socks. How many do you need to pull to
be certain you have two of the same color?

Solution

You could have two socks of different colors, but once you pull out three socks, there must be at least two of the same color. 
The answer is three socks. 

Example 

in a group of 30 people, each person picks a number from 1 to 10.  What is the minimum number of people needed to be sure
you have two people with the same number?

Solution

11 

Summary and Review
This chapter is about combinatorics, which is a study of arrangements of objects.
We have a theorem to find the size of a set of consecutive integers.
The probability of a event is the # of ways it can happen divided by the total # of outcomes.
Probability is a number from 0 to 1, inclusive.
The Pigeonhole Principle says if you have more pigeons than pigeonholes, at least 2 pigeons must cuddle up.

Exercises 

exercise 

A random number is picked from 80 to 600.

(a) How many numbers are there to pick?

(b) What is the probability of picking the number 220?

Answer

(a)  so there are 521 numbers 
(b) 

Exercise 
Are you able to answer any of the 1st three examples in this section?

If so, tell your professor what you came up with.  If not, look back after you have done more work in this chapter

Exercise 

In a group of 100 people, each person picks a number from 100 to 120.  What is the minimum number of people you need to be
sure two of them have the same number?

Answer

22

Exercise 

7.1.2

f : X → Y X Y |X| > |Y | f

7.1.5

7.1.6

7.1.1

600 −80 +1 = 521
1

521

7.1.2

7.1.3

7.1.4
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In a group of 20 people, each person has one pet that is a cat, a dog or a goat. What is the minimum number of people you need
to be sure two of them have the same type of pet?

Exercise 

How many cards do you need to pick from a standard 52-card deck to be sure to get a red card?

Answer

27, because if you pick all of the 26 black cards, the next one must be red.

Exercise 
In a school of 600 students, do there have to be two students with the same birthday (month and day)? Why?

Exercise 
How many integers do you need to pick to be sure that at least two of them have the same remainder after dividing by 5?

Answer

6, because there are 5 possible remainders: 0, 1, 2, 3, 4

Exercise 
How many cards do you need to pick from a standard 52-card deck to be sure to get two cards of the same suit?

Exercise 
If you pick one card from a standard 52-card deck, what is the probability it will be a diamond?

Answer

Exercise 

If you pick one card from a standard 52-card deck, what is the probability it will be

(a) a two or three

(b) a two and a three

(c) a red card or a black card

Exercise 

If you pick one card from a standard 52-card deck, what is the probability it will be

(a) an eight or a nine or a ten?

(b) an eight and a nine?

Answer

(a)  
 

(b) 

This page titled 7.1: Intro, Probability and Pigeonhole Principle is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by Harris Kwong (OpenSUNY) .
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7.2: Addition and Multiplication Principles

Addition Principle

Preliminaries

Recall that the cardinality of a finite set , denoted , is the number of elements it contains.

Example 

If , then . Also,

Notice that , because an empty set does not contain any element.

It becomes more interesting when we consider the cardinality* of a union or an intersection of two or more sets.

*This cardinality link will take you to a not completely edited, but interesting dive into cardinality of infinite sets.

Example 
Determine  and  if  and .

Solution

Since , and , it is clear that , and .

Example 
Determine  and  if  and .

Solution

Since , and , it is clear that , and .

hands-on exercise 

Let , and . Evaluate  and .

The difference between the last two examples is whether the two sets  and  have a nonempty intersection. Two sets  and 
are disjoint if . A collection of sets  is said to be pairwise disjoint if  whenever . 

Example 
Let , ,  and . Then , , and  are pairwise disjoint, so are  and 

, but , , and  are not.

Theorem : Addition Principle

If the finite sets  are pairwise disjoint, then

Use the addition principle if we can break down the problems into cases, and count how many items or choices we have in each
case. The total number is the sum of these individual counts. The idea is, instead of counting a large set, we divide it up into several
smaller subsets, and count the size of each of them. The cardinality of the original set is the sum of the cardinalities of the smaller
subsets. This divide-and-conquer approach works perfectly only when the sets are pairwise disjoint.

Example 

A |A|

7.2.1

A = {−1, 0, 2} |A| = 3

|{2}|

|{2, 5, −1, −3}|

|{x ∈ R ∣ = 1}|x2

=

=

=

1,

4,

2.

|∅| = 0

7.2.2

|A∪B| |A∩B| A = {2, 5} B = {7, 9, 10}

A∪B = {2, 5, 7, 9, 10} A∩B = ∅ |A∪B| = 5 |A∩B| = 0

7.2.3

|A∪B| |A∩B| A = {2, 5} B = {5, 9, 10}

A∪B = {2, 5, 9, 10} A∩B = {5} |A∪B| = 4 |A∩B| = 1

7.2.1

A = {n ∈ Z ∣ −5 ≤ n ≤ 3} B = {n ∈ Z ∣ −3 ≤ n ≤ 5} |A∩B| |A∪B|

A B A B

A∩B = ∅ , , … ,A1 A2 An ∩ = ∅Ai Aj i ≠ j

7.2.4

A = {1, 0, −1} B = {−2, 0, 2} C = {−2, 2} D = {3, 4, 5} A C D B

D A B C

7.2.1

, , … ,A1 A2 An

| ∪ ∪ ⋯ ∪ | = | | +| | +⋯ +| |.A1 A2 An A1 A2 An (7.2.1)

7.2.5
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To find the number of students present at a lecture, the teacher counts how many students there are in each row, then adds up the
numbers to obtain the total count.

When the sets are not disjoint, the addition principle does not give us the right answer because the elements belonging to the
intersection are counted more than once. We have to compensate the over-counting by subtracting the number of times these
elements are over-counted. The simplest case covers two sets.

Theorem : Principle of Inclusion-Exclusion (PIE)

For any finite sets  and , we have

Proof

Observe that  is the disjoint union of three sets

It is clear that , and . Therefore,

which is what we have to prove.

The principle of inclusion-exclusion also works if  and  are disjoint, because in such an event, , reducing PIE to
the addition principle.

Example 
Assume the current enrollment at a college is 4689, with 60 students taking MATH 210, 42 taking CSIT 260, and 24 taking
both. Together, how many different students are taking these two courses? In other words, determine the number of students
who are taking either MATH 210 or CSIT 260.

Solution

Let  be the set of students taking MATH 210, and  the set of students taking CSIT 260, Then, , , and 
. We want to find . According to PIE,

Therefore, 78 students are taking either MATH 210 or CSIT 260.

Example 
Among 4689 students, 2112 of them have earned at least 60 credit hours and 2678 of them have earned at most 60 credit hours.
How many students are there who have accumulated exactly 60 hours?

Solution

Let  be the set of students who have earned at least 60 credit hours, and  be the set of students who have earned at most
60 credit hours. We want to find . According to PIE,

Hence,

There are 101 students who have accumulated exactly 60 credit hours.

7.2.2

A B

|A∪B| = |A| + |B| − |A∩B|. (7.2.2)

A∪B

A∪B = (A−B) ∪ (A∩B) ∪ (B−A). (7.2.3)

|A−B| = |A| − |A∩B| |B−A| = |B| − |A∩B|

|A∪B| =

=

=

|A−B| + |A∩B| + |B−A|

(|A| − |A∩B|) +|A∩B| +(|B| − |A∩B|)

|A| + |B| − |A∩B|,

A B |A∩B| = 0

7.2.6

A B |A| = 60 |B| = 42
|A∩B| = 24 |A∪B|

|A∪B| = |A| + |B| − |A∩B| = 60 +42 −24 = 78. (7.2.4)

7.2.7

A B

|A∩B|

4689 = |A∪B| = |A| + |B| − |A∩B| = 2112 +2678 −|A∩B|. (7.2.5)

|A∩B| = (2112 +2678) −4689 = 101. (7.2.6)
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hands-on exercise 
The attendance at two consecutive college football games was 72397 and 69211 respectively. If 45713 people attended both
games, how many different people have watched the games?

hands-on exercise 
The attendance at two consecutive college football games was 72397 and 69211 respectively. If 93478 different individuals
attended these two games, how many have gone to both?

Sometimes, it is easy to work with the complement of a set.

Lemma 

For any finite set , we have

where  is the universal set containing .

Example 
In Example 6 since there are 78 students taking either MATH 210 or CSIT 260, the number of students taking neither is 

.

The principle of inclusion-exclusion can be extended to any number of sets. The situation is more complicated, because some
elements may be double-counted, some triple-counted, etc. To give you a taste of the general result, here is the principle of
inclusion-exclusion for three sets.

Theorem 
For any three finite sets ,  and ,

Proof

The union  is the disjoint union of seven subsets:

We can apply an argument similar to the one used in the union of two sets to complete the proof. We leave the details as an
exercise.

hands-on exercise 

A group of students claims that each of them had seen at least one part of the Back to the Future trilogy. A quick show of hands
reveals that

47 had watched Part I;
43 had watched Part II;
32 had watched Part III;
33 had watched both Parts I and II;
27 had watched both Parts I and III;
25 had watched both Parts II and III;
22 had watched all three parts.
How many students are there in the group? 
 
Hint: A Venn Diagram can be helpful with this exercise.

7.2.2

7.2.3

7.2.3

S

| | = |U| − |S|,S
¯¯̄

(7.2.7)

U S

7.2.8

4689 −78 = 4611

7.2.1

A B C

|A∪B∪B| = |A| + |B| + |C| − |A∩B| − |A∩C| − |B∩C| + |A∩B∩C|.

A∪B∪C

A−(B∪C), B−(C ∪A), C −(A∪B), (A∩B) −(A∩B∩C),

(B∩C) −(A∩B∩C), (C ∩A) −(A∩B∩C), and A∩B∩C.

7.2.4
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Multiplication Principle
Another useful counting technique is the multiplication principle.

Theorem  (Multiplication Principle)

For any finite sets  and , we have

Clearly, this can be extended to an -fold Cartesian product.

Theorem 

For any finite sets , we have

In many applications, it may be helpful to use an equivalent form.

Theorem  (Multiplication Principle: Alternate Form)

If a task consists of  steps, and if there are  ways to finish step , then the entire job can be completed in 
different ways.

Now that we have two counting techniques, the addition principle and the multiplication principle, which one should we use? The
major difference between them is whether

the jobs can be divided into cases, groups, or categories; or
each job can be broken up into steps.

In practice, it helps to draw a picture of the configurations that we are counting.

Example 
How many different license plates are there if a standard license plate consists of three letters followed by three digits?

Solution

We need to decide how many choices we have in each position. Draw a picture to show the configuration. Draw six lines to
represent the six positions. Above each line, describe briefly the possible candidates for that position, and under each line,
write the the number of choices.

 any any any any any any

choices: letter letter letter digit digit digit

 

# of choices: 26 26 26 10 10 10

This left-to-right configuration suggests that the multiplication principle should be used. The answer is 
.

As you become more experienced, you can argue directly, as follows. There are 26 choices for each of the three letters, and
10 choices for each digit. So there are  different license plates.

Example 
Find the number of positive integers not exceeding 999 that end with 7.

Solution 1 

The integers can have one, two, or three digits, so we have to analyze three cases.

7.2.5

A B

|A×B| = |A| ⋅ |B|. (7.2.8)

n

7.2.6

, , … ,A1 A2 An

| × ×⋯ × | = | | ⋅ | | ⋅ ⋯ ⋅ | |.A1 A2 An A1 A2 An

7.2.7

k ni i …n1n2 nk

7.2.9

26 ⋅ 26 ⋅ 26 ⋅ 10 ⋅ 10 ⋅ 10 = 2603

26 ⋅ 26 ⋅ 26 ⋅ 10 ⋅ 10 ⋅ 10 = 2603

7.2.10
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Case 1. There is only one integer with one digit, namely, the integer 7.

Case 2. If there are two digits, the first could be any digit between 1 and 9, and the last digit must be 7.

choices: 1–9 7

 

# of choices: 9 1

This gives us nine choices.

Case 3. If there are three digits, the first digit could be any digit between 1 and 9, the second any digit between 0 and 9,
and the last digit must be 7.

  any  

choices: 1–9 digit 7

 

# of choices: 9 10 1

 
Hence, there are 90 integers in this case. 
 
Combining the three cases, we have a total of  integers that meet the requirements.

Solution 2 

The integers could be written as three-digit integers if we allow 0 as the leading digits. For instance, 7 can be written as ,
and  as . Under this agreement, we have to fill three positions where the last one is always occupied by the digit 7. The
first two digits are , or 9, so there are 10 choices for each position.

 any any  

choices: digit digit 7

 

# of choices: 10 10 1

Together, there are  such integers.

hands-on exercise 

How many natural numbers less than 1000000 are there that end with the digit 3?

hands-on exercise 

How many natural numbers less than 10000 are there that end with the digit 0?

Example 
Determine the number of four-digit positive integers without repeated digits.

Solution

We want to determine how many choices there are for each place value. The first digit has nine choices because it cannot be
0. Once the first digit is chosen, there are nine choices left for the second digit; and then eight choices for the next digit, and
seven choices for the last digit. Together, we have  four-digit positive integers that do not contain any
repeated digits. Question: Can we start counting from the last digit?

hands-on exercise 

1 +9 +90 = 100

007
34 034

0, 1, 2, … , 8

10 ⋅ 10 = 100

7.2.5

7.2.6

7.2.11

9 ⋅ 9 ⋅ 8 ⋅ 7 = 4536

7.2.7
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How many six-digit natural numbers are there that do not have any repeated digit?

Example 

How many two-digit positive integers do not have consecutive 5s?

Solution 1

There are three disjoint cases:

both digits are not 5,

only the first digit is 5, and

only the last digit is 5.

There are  integers that meet the requirement.

Solution 2

An easier solution is to consider the complement of the problem. There is only one integer with consecutive 5s, namely, the
integer 55. There are 90 two-digit integers, hence  of them do not have consecutive 5s.

hands-on exercise 

How many three-digit natural numbers are there that do not have consecutive 4s?

Example 
In how many ways can we draw a sequence of three cards from a standard deck of 52 cards?

Solution

This is a trick question! The answer depends on whether we can return a drawn card to the deck. With replacement, the
answer is ; without replacement, it is .

Example 
A standard New York State license plate consists of three letters followed by four digits. Determine the number of standard New
York State license plates with K as the first letter or 8 as the first digit.

Solution

The keyword “or” suggests that we are looking at a union, hence, we have to apply PIE. We need to analyze three
possibilities:

There are  license plates with K as the first letter.
There are  license plates with 8 as the first digit.
There are  license plates with K as the first letter and 8 as the first digit.

The answer is .

hands-on exercise 
To access personal account information, a customer could log in to the bank’s web site with a PIN consisting of two letters
followed by

exactly four digits,

at most six digits,

at least two but at most 6 digits.

How many different PINs are there in each case?

7.2.12

8 ⋅ 9 +9 +8 = 89

90 −1 = 89

7.2.8

7.2.13

523 52 ⋅ 51 ⋅ 50

7.2.14

⋅262 104

⋅263 103

⋅262 103

⋅ + ⋅ − ⋅262 104 263 103 262 103

7.2.9
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Summary and Review
Use the addition principle if the problem can be divided into cases. Make sure the cases do not overlap.
If the cases overlap, the number of objects belonging to the overlapping cases must be subtracted from the total to obtain the
correct count.
In particular, the principle of inclusion-exclusion states that .
Use the multiplication principle if the problem can be solved in several steps.
How can we get started? Imagine you want to list all the possibilities, what is a systematic way of doing so? Follow the steps,
and count how many objects you would end up with.
It may be helpful to use a schematic diagram. Draw one line for each step. Above the lines, write the choices. Below the lines,
write the number of choices. Apply the multiplication principle to finish the problem.
If there are other cases involved, repeat, and add the results from all the possible cases.

Exercises 

exercise 
A professor surveyed the 98 students in her class to count how many of them had watched at least one of the three films in The
Lord of the Rings trilogy. This is what she found:

74 had watched Part I;
57 had watched Part II;
66 had watched Part III;
52 had watched both Parts I and II;
51 had watched both Parts I and III;
45 had watched both Parts II and III;
43 had watched all three parts.

How many students did not watch any one of these three movies?

(Hint: A Venn Diagram may be helpful.)

Solution

6

exercise 

Forty-six students in a film class told the professor that they had watched at least one of the three films in The Godfather trilogy.
Further inquiry led to the following data:

41 had watched Part I;
37 had watched Part II;
33 had watched Part III;
33 had watched both Parts I and II;
30 had watched both Parts I and III;
29 had watched both Parts II and III.

1. How many students had watched all three films?
2. How many students had watched only Part I?
3. How many students had watched only Part II?
4. How many students had watched only Part III?

 

exercise 

Joe has 10 dress shirts and seven bow ties. In how many ways can he match the shirts with bow ties?

Solution

|A∪B| = |A| + |B| − |A∩B|

7.2.1

7.2.2

7.2.3
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70

exercise 
A social security number is a sequence of nine digits. Determine the number of social security numbers that satisfy the
following conditions:

1. There are no restrictions.
2. The digit 8 is never used.
3. The sequence does not begin or end with 8.
4. No digit is used more than once.

exercise 
A professor has seven books on discrete mathematics, five on number theory, and four on abstract algebra. In how many ways
can a student borrow two books not both on the same subject?

Hint

Which two subjects would the student choose?

 

Solution

exercise 
How many different collections of cans can be formed from five identical Cola-Cola cans, four identical Seven-Up cans, and
seven identical Mountain Dew cans?

Hint

How many cans of Cola-Cola, Seven-Up, and Mountain Dew would you pick?

exercise 
How many five-letter words (technically, we should call them strings, because we do not care if they make sense) can be formed
using the letters A, B, C, and D, with repetitions allowed. How many of them do not contain the substring BAD?

Hint

For the second question, consider using a complement.

 

Solution

, 

exercise 
How many different five-digit integers can be formed using the digits 1, 3, 3, 3, 5?

Hint

The three digits 3 are identical, so we cannot tell the difference between them. Consequently, what really matters is where
we put the digits 1 and 5. Once we place the digits 1 and 5, the remaining three positions must be occupied by the digits 3.

exercise 

7.2.4

7.2.5

7 ⋅ 5 +7 ⋅ 4 +5 ⋅ 4

7.2.6

7.2.7

45 −3 ⋅45 42

7.2.8

7.2.9
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Four cards are chosen at random from a standard deck of 52 playing cards, with replacement allowed. This means after choosing
a card, the card is return to the deck, and the deck is reshuffled before another card is selected at random. Determine the number
of such four-card sequences if

1. There are no restrictions.
2. None of the cards can be spades.
3. All four cards are from the same suit.
4. The first card is an ace and the second card is not a king.
5. At least one of the four cards is an ace.

Solution

(a)  (b)  (c)  (d)  (e) 

exercise 
Three different mathematics final examinations and two different computer science final examinations are to be scheduled
during a five-day period. Determine the number of ways to schedule these final examinations from 11 AM to 1 PM if (are these
one-hour exams?)

1. There are no restrictions.
2. No two examinations can be scheduled on the same day.
3. No two examinations from the same department can be scheduled on the same day.
4. Each mathematics examination must be the only examination for the day on which it is scheduled.

exercise 

Determine the number of four-digit positive integers that satisfy the following conditions:

1. There are no restrictions.
2. No integer contains the digit 8.
3. Every integer contains the digit 8 at least once.
4. Every integer is a palindrome (A positive integer is a palindrome if it remains the same when read backward, for example,

3773 and 47874).

Solution

(a)  (b)  (c)  (d) 

exercise 

A box contains 12 distinct colored balls (for instance, we could label them as 1, 2, …, 12 to distinguish them). Three of them are
red, four are yellow, and five are green. Three balls are selected at random from the box, with replacement. Determine the
number of sequences that satisfy the following conditions:

1. There are no restrictions.
2. The first ball is red, the second is yellow, and the third is green.
3. The first ball is red, and the second and third balls are green.
4. Exactly two balls are yellow.
5. All three balls are green.
6. All three balls are the same color.
7. At least one of the three balls is red.

exercise 
Let  and . Determine the number of functions  that satisfy the
following conditions:

1. There are no restrictions.

524 394 4 ⋅ 134 4 ⋅ 48 ⋅ 522 −524 484

7.2.10

7.2.11

9 ⋅ 103 8 ⋅ 93 9 ⋅ −8 ⋅103 93 9 ⋅ 10

7.2.12

7.2.13

A = {a, b, c, d, e, f} B = {1, 2, 3, 4, 5, 6, 7, 8} f : A → B
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2.  is one-to-one.
3.  is onto.
4.  is odd for at least one  in .
5.  and  is odd.
6. .

Solution

(a)  (b)  (c) 0 (d)  (e)  (f) 

exercise 
How many onto functions are there from an -element set  to ?

This page titled 7.2: Addition and Multiplication Principles is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Harris Kwong (OpenSUNY) .

f

f

f(x) x A

f(a) = 3 f(b)
(4) = {a}f−1

86 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 −86 46 4 ⋅ 84 75

7.2.14

n A {a, b}
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7.3: Permutations
Let  be a finite set with  elements. For , an -permutation of  is an ordered selection of  distinct elements from .
In other words, it is the linear arrangement of  distinct objects , where  for each . The number of -
permutations of an -element set is denoted by . It also appears in many other forms and names.

The number of permutations of  objects, taken  at a time without replacement.
The number of ways to arrange  objects (in a sequence), taken  at a time without replacement.

All of them refer to the same number . The keywords are:

1. “Permutation” or “arrangement,” both of which suggest that order does matter.
2. “Without replacement” means the entries in the permutation/arrangement are distinct.

In some textbooks and on some calculators, the notation  is also written as  or .

Example 
The 1-permutations of  are

Consequently, . The 2-permutations of  are

Hence, . What are the 3-permutations and 4-permutations of ? Can you explain why the numbers of 3-
permutations and 4-permutations are equal?

Computing the value of  is easy. We want to arrange  objects in a sequence. These  objects are to be selected from a pool
of  items. Hence there are  ways to fill the first position. Once we settle with the first position, whatever we put there cannot be
used again. We are left with  choices for the second position. Likewise, once it is filled, there are only  choices for the
third position. Now it is clear that  is the product of  numbers of the form , . What is the last number in
this list? There are  numbers before it, so it must be .

 formula

Theorem 
For all integers  and  satisfying ,

Although the formula  is rather easy to remember, the other form

is actually more useful in numeric computation, especially when it is done by hand. We multiply  by the next smaller integer 
, and then the next smaller integer , and so forth, until we have a product of  consecutive factors. For instance,

How about  and ?

Example 
How would you compute the value of  by hand, or if your calculator does not have that  button?

A n 1 ≤ r ≤ n r A r A

r …a1a2 ar ∈ Aai i r

n P (n, r)

n r

n r

P (n, r)

P (n, r) P n
r nPr

7.3.1

{a, b, c, d}

a, b, c, d.

P (4, 1) = 4 {a, b, c, d}

ab,

ba,

ca,

da,

ac,

bc,

cb,

db,

ad,

bd,

cd,

dc.

P (4, 2) = 12 {a, b, c, d}

P (n, r) r r

n n

n−1 n−2

P (n, r) r n n−1,n−2, …

r−1 n−(r−1) = n−r+1

P(n,r)

7.3.1

n r 1 ≤ r ≤ n

P (n, r) = n(n−1) ⋯ (n−r+1) = .
n!

(n−r)!
(7.3.1)

P (n, r) = n!
(n−r)!

P (n, r) = n(n−1) ⋯ (n−r+1)
  

r

(7.3.2)

n

n−1 n−2 r

P (4, 2) = 4 ⋅ 3 = 12, and P (9, 3) = 9 ⋅ 8 ⋅ 7 = 504. (7.3.3)

P (n, 1) P (n, 2)

7.3.2

P (278, 3) nPr
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Solution

We find .

hands-on Exercise 

Compute  by hand.

Remark

It follows from the first version of the formula that . The second version reduces to

Consequently, to make the second version works, we have to define .

Remark

In your homework assignments, quizzes, tests, and final exam, it is perfectly fine to use the notation  in your answers. In
fact, leaving the answers in terms of  gives others a clue to how you obtained the answer.

It is often easier and less confusing if we use the multiplication principle. Once you realize the answer involves , it is not
difficult to figure out the values of  and . A good start, before jumping into any calculation, is to ask yourself, how would you
list the possible arrangements? Also, try constructing some examples. These can give you an idea of how many choices you have in
each position.

Example 

A police station has 12 police officers on duty. In how many ways can they be assigned to foot patrol in five different districts,
assuming that we assign only one police officer per district.

Solution

Imagine you are the officer who schedules the assignments. You have to assign someone to the first district, and then another
officer to the second district, and so forth.

district: first second third fourth fifth

   another   

 any another different … …

choices: officer officer officer   

 

# of choices: 12 11 10 9 8

There are 12 choices for the first district, 11 for the second, etc. The multiplication principle implies that the answer is 
, which is in the form of . Since the product starts with 12, and we need a product of 5 consecutive

numbers, the answer is .

hands-on Exercise 
A school sends a team of six runners to a relay game. In how many ways can they be selected to participate in the  m
relay?

Example 

From a collection of 10 flags of different patterns, how many three-flag signals can we put on a pole?

Solution

P (278, 3) = 278 ⋅ 277 ⋅ 276 = 21253656

7.3.1

P (21, 4)

P (n,n) = n!

n! = P (n,n) = .
n!

0!
(7.3.4)

0! = 1

P (n, r)

P (n, r)

P (n, r)

n r

7.3.3

12 ⋅ 11 ⋯ P (n, r)

P (12, 5)

7.3.2

4 ×100

7.3.4
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Since the flags are arranged on a flag pole, the order is important. There are 10 choices for the top flag, 9 for the second, and
8 for the third. Therefore,  different signals can be formed.

 

For example,   or 

 

Example 
Determine the number of functions  if

1. There are no restrictions.
2.  is one-to-one.
3.  is onto.

Solution

To distinguish one function from another function, we have to compare their images. Hence, a function is completely
determined by its images (surprise: not by its formula!). After all, we may not even know the formula behind a function, so
we cannot and should not rely on the formula alone.

To determine how many functions there are from  to , we have to determine the number of ways to assign
values to , , ,  and .

images:

choices:      

 

# of choices:      

(a) If there are no restrictions, we have 22 choices for each of these five images. Hence there are 
functions.

(b) If  is one-to-one, we cannot duplicate the images. So we have 22 choices for , 21 for , and so on. There are 
 one-to-one functions.

(c) There are at most five distinct images, but  has 22 elements, so at least 17 of them will be left unused. Hence  can
never be onto. The number of onto functions is therefore zero.

hands-on Exercise 
How many functions are there from  to ? How many of them are one-to-one?

Example 
Let  and  be finite sets, with  and . Determine the number of one-to-one functions from  to .

Solution

How can we come up with a one-to-one function from  to ? We have to specify the image of each element in . There
are  choices for the first element. Since repeated images are not allowed, we have only  choices for the image of the
second element in , and  choices for the third image, and so forth. The answer is .

What if ? We know that in such an event, there does not exist any one-to-one function from  to  because there are
not enough distinct images. Does  still make sense? The product version of the formula says that  is a product
of  consecutive numbers. Hence, for example,

10 ⋅ 9 ⋅ 8 = P (10, 3)

Zn

Zn = {0, 1, 2, 3, … ,n−1}.

= {0, 1, 2, 3, 4, 5}Z6 = {0, 1, 2, 3, … , 21}.Z22

7.3.5

f : {1, 3, 4, 7, 9} → Z22

f

f

{1, 3, 4, 7, 9} Z22

f(1) f(3) f(4) f(7) f(9)

f(1) f(3) f(4) f(7) f(9)

22 ⋅ 22 ⋅ 22 ⋅ 22 ⋅ 22 = 225

f f(1) f(3)

P (22, 5)

Z22 f

7.3.3

{2, 4, 6, 8, 10} Z15

7.3.6

A B |A| = s |B| = t A B

A B A

t t−1

A t−2 P (t, s)

t < s A B

P (t, s) P (t, s)

s
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which means there is no one-to-one function from  to .

Not all problems use . In many situations, we have to use  together with other numbers. The safest approach is to
rely on the addition and multiplication principles.

Example 

How many four-digit integers are there that do not contain repeated digits?

Solution

There are 10 choices for each digit, but the answer is not , because we cannot use 0 as the first digit. To ensure that
we have a four-digit integer, the first digit must be nonzero. This leaves us 9 choice for the first digit. Then we have 9
choices for the second digit, 8 and 7 for the next two. The answer is .

Example 
Twelve children are playing “musical chairs,” with 9 chairs arranged in a circle on the floor. In how many ways can they be
seated?

Solution

The answer is not  because any position can be the first position in a circular permutation. What matters is the
relative placement of the selected objects, all we care is who is sitting next to whom. The correct answer can be found in the
next theorem.

Theorem 
The number of circular -permutations of an -element set is .

Proof

Compare the number of circular -permutations to the number of linear -permutations. Start at any position in a circular -
permutation, and go in the clockwise direction; we obtain a linear -permutation. Since we can start at any one of the 
positions, each circular -permutation produces  linear -permutations. This means that there are  times as many circular 

-permutations as there are linear -permutations. Therefore, the number of circular -permutations is .

Alternate Proof

Let  be the set of all linear -permutations of the  objects, and let  be the set of all circular -permutations. Define a
function from  to  as follows. Given any -permutation, form its image by joining its “head” to its ”tail.” It becomes
clear, using the same argument in the proof above, that  is an -to-one function, which means  maps  distinct elements
from  to the same image in . Therefore  has  times as many elements as in . This means . Since 

, we find .

hands-on Exercise 
A circular cardboard has eight dots marked along its rim. In how many ways can we glue eight beads of different colors, one on
each dot?

hands-on Exercise 

In how many ways can we form a necklace with eight beads of different color?

Remark: When a necklace is flipped around, it is still the same necklace. Thus, the orientation of the necklace does not matter:
we can count the beads clockwise, or counterclockwise.

Example 

P (3, 6) = 3 ⋅ 2 ⋅ 1 ⋅ 0 ⋅ (−1) ⋅ (−2) = 0, (7.3.5)

A B

P (n, r) P (n, r)

7.3.7

P (10, 4)

9 ⋅ 9 ⋅ 8 ⋅ 7

7.3.8

P (12, 9)

7.3.1

r n P (n, r)/r

r r r

r r

r r r r

r r r P (n, r)/r

A r n B r

A B r

f r f r

A B A r B |A| = r ⋅ |B|

|A| = P (n, r) |B| = P (n, r)/r

7.3.4

7.3.5

7.3.9
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In how many ways can we arrange 20 knights at a round table? What if two of them refuse to sit next to each other?

Solution

Without any restriction, there are  ways to seat the 20 knights. To solve the second problem, use complement. If
two of them always sit together, we in effect are arranging 19 objects in a circle. Among themselves, these two knights can
be seated in two ways, depending on who is sitting on the left. Hence, there are  ways to seat the 20
knights, with two of them always together. Therefore, the final answer to the second problem is .

Summary and Review
Use permutation if order matters: the keywords arrangement, sequence, and order suggest that we should use permutation.
It is often more effective to use the multiplication principle directly.
The number of ways to arrange  objects linearly is , and the number of ways to arrange them in a circle is .

Exercises 

Exercise 
How many eight-character passwords can be formed with the 26 letters in the English alphabet, each of which can be in
uppercase or lowercase, and the 10 digits? How many of can be formed if they do not have any repeated characters?

Solution

, .

Exercise 
How many functions are there from  to ? How many of them are one-to-one?

Exercise 

The school board of a school district has 14 members. In how many ways can the chair, first vice-chair, second vice-chair,
treasurer, and secretary be selected?

Solution

.

Exercise 
The wrestling teams of two schools have eight and 10 members respectively. In how many ways can three matches be made up
between them?

Exercise 
Six students in the class will sit in a group in a circle.

(a) How many arrangements are there?

(b) How many arrangements are there if two students insist on sitting next to each other?

Solution

(a)  
(b) 

 

Exercise 

A teacher takes her AP calculus class of 8 students to lunch. They sit around a circular dining table.

20!/20 = 19!

2 ⋅ 19!/19 = 2 ⋅ 18!

19! −2 ⋅ 18!

n n! (n−1)!

7.3.1

628 P (62, 8)

7.3.2

Z6 Z12

7.3.3

P (14, 5)

7.3.4

7.3.5

= 5!
6!

6

2 ⋅ = 2 ⋅ 4!5!
5

7.3.6
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1. How many seating arrangements are possible?
2. How many seating arrangements are there if the teacher has to sit on the chair closest to the soda fountain?
3. Among the students are one set of triplets. How many seating arrangements are there without all three of them sitting

together?

Exercise 

Eleven students go to lunch. There are two circular tables in the dining hall, one can seat 7 people, the other can hold 4. In how
many ways can they be seated?

Solution

.

Exercise 
Five couples attend a wedding banquet. They are seated on a long table. How many seating arrangements that alternate men and
women? What if the table is circular in shape?

This page titled 7.3: Permutations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

7.3.7

P (11, 7) ⋅ 3!/7

7.3.8
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7.4: Combinations
In many counting problems, the order of arrangement or selection does not matter. In essence, we are selecting or forming subsets.

If we are choosing  people out of  Discrete students to be president, vice-president and janitor, then the order makes a
difference.  The choice of:

Steve, Ahmet, Liz (SAL) v.s Liz, Ahmet, Steve (LAS) would make quite a difference for Liz and Steve. Permutations include all
the different arrangements, so we say "order matters" and there are  ways to choose   people out of  to be president,
vice-president and janitor.

Now, change the scenario to chose  people out of  to get an A for the course.  This time SAL and LAS are not considered
different choices; here we say "order does not matter".  This scenario is the number of combinations (basically subsets) and we call
this one "  choose ".  With permutations, each set of 3 letters, such as SAL, will be rearranged  or  times.  For combinations,
we only use a set of 3 letters once (since order does not matter) and so the number of combinations in this case will be 

Example 

Determine the number of ways to choose 4 values from 1, 2, 3, …, 20, in which the order of selection does not matter.

Solution

Let  be the number of ways to choose the 4 numbers. Since the order in which the numbers are selected does not matter,
these are not sequences (in which order of appearance matters). We can change a selection of 4 numbers into a sequence.
The 4 numbers can be arranged in  ways. Therefore, all these 4-number selections together produce 
sequences. The number of 4-number sequences is . Thus, , or equivalently, .

Definition: combinations
The number of -element subsets in an -element set is denoted by

where  is read as “  choose .” It determines the number of combinations of  objects, taken  at a time (without
replacement). Alternate notations such as  and  can be found in other textbooks and some calculators. Do not write it as 

; this notation has a completely different meaning.

Recall that  counts the number of ways to choose or select  objects from a pool of  objects in which the order of selection
does not matter. Hence, -combinations are subsets of size .

Example 

The 2-combinations of  are

Therefore . What are the 1-combinations and 3-combinations of ? What can you say about the values of  and ?

Solution

The 1-combinations are the singleton sets , , , and . Hence, . The 3-combinations are

Thus, .

 C(n,r) formula 

Theorem 
For all integers  and  satisfying , we have

3 20

P (20, 3) 3 20

3 20

20 3 3! 6

.
P(20,3)

3!

7.4.1

N

P (4, 4) = 4! N ⋅ 4!

P (20, 4) N ⋅ 4! = P (20, 4) N = P (20, 4)/4!

r n

C(n, r)  or  ( ),
n

r
(7.4.1)

( )n
r

n r n r

nCr Cn
r

( )n
r

( )nr r n

r r

7.4.2

S = {a, b, c, d}

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. (7.4.2)

( )= 64
2 S ( )41 ( )43

{a} {b} {c} {d} ( )= 44
1

{a, b, c}, {a, b, d}, {a, c, d}, and {b, c, d}. (7.4.3)

( )= 44
3

7.4.1

n r 0 ≤ r≤ n
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Proof

The idea is similar to the one we used in the alternate proof of Theorem [thm:circperm]. Let  be the set of all -
permutations, and let  be the set of all -combinations. Define  to be the function that converts a permutation into
a combination by “unscrambling” its order. Then  is an -to-one function because there are  ways to arrange (or shuffle) 

 objects. Therefore

Since , and , it follows that .

Example 

There are  ways to choose 5 numbers, without repetitions, from the integers . To compute its numeric value by
hand, it is easier if we first cancel the common factors in the numerator and the denominator. We find

which gives .

hands-on Exercise 

Compute  by hand.

hands-on Exercise 
A three-member executive committee is to be selected from a group of seven candidates. In how many ways can the committee
be formed?

hands-on Exercise 

How many subsets of  have five elements?

 

Theorem  

For , we have .

Proof

According to Theorem 7.4.1 we have

which is precisely .

Example 

To compute the numeric value of , instead of computing the product of 47 factors as indicated in the definition, it is much
faster if we use

from which we obtain .

( ) = = = .
n

r

P (n, r)

r!

n(n−1)⋯(n−r+1)

r!

n!

r! (n−r)!
(7.4.4)

A r

B r \fcnfAB

f r! r!

r

|A| = r! ⋅ |B|. (7.4.5)

|A| = P (n, r) |B| = ( )n
r

( )= P (n, r)/r!n

r

7.4.3

( )40
5

1, 2,… , 40

( ) = = 13 ⋅ 38 ⋅ 37 ⋅ 36,
40

5

40 ⋅ 39 ⋅ 38 ⋅ 37 ⋅ 36

5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1
(7.4.6)

( )= 65800840
5

7.4.1

( )12
3

7.4.2

7.4.3

{1, 2,… , 23}

( ) = ( )n

r

n

n−r

7.4.2

0 ≤ r≤ n ( )= ( )n
r

n
n−r

( ) = = ,
n

n−r

n!

(n−r)! (n−(n−r))!

n!

(n−r)! r!
(7.4.7)

( )n
r

7.4.4

( )50
47

( ) =( ) = ,
50

47

50

3

50 ⋅ 49 ⋅ 48

3 ⋅ 2 ⋅ 1
(7.4.8)

( )= 1960050
47
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hands-on Exercise 

Compute, by hand, the numeric value of .

Pascal's Triangle

In this section we will cover 

how to construct Pascal's Triangle
how to read values for combinations from Pascal's Triangle

In a later section, we will prove that this construction does give the values for combinations.

Start with a , then two more 's.  Notice how the spacing is offset on each row. 

To create the next row, start with a  and then add the two entries just above. So under the      row, start with a 
, then add  to get the next entry, then , etc.  Notice the symmetry; this relates to Theorem 7.4.2.

 

Here's more of the triangle:

From the top, these rows are the 0-row, the 1-row, the 2-row, etc.

The 5-row consists of:

These numbers correspond to:

The symmetry of the triangle shows the symmetric values, such as  

Example 

Use Pascal's Triangle to find .

Answer

After the 6-row (see above) create the 7-row.  

7.4.4

( )529
525

1 1

1

1

1

3

1

2

1

3

1

1

(7.4.9)

1 1 3 3 1

1 1+3 = 4 3+3 = 6

1

1

1

4

1

3

1

2

6

1

3

1

4

1

1

(7.4.10)

1

1

1

6

1

5

1

4

15

1

3

10

1

2

6

20

1

3

10

1

4

15

1

5

1

6

1

1

(7.4.11)

1 5 10 10 5 1 (7.4.12)

( ) ( ) ( ) ( ) ( ) ( ) .
5

0

5

1

5

2

5

3

5

4

5

5
(7.4.13)

( )= ( )5
1

5
4

7.4.5

( )7
3

1 7 21 35 35 21 7 1 (7.4.14)
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Count over, , so the answer is 
 

Now we are ready to look at some mixed examples. In all of these examples, sometimes we have to use permutation, other times
we have to use combination. Very often we need to use both, together with the addition and multiplication principles. You may ask,
how can I figure out what to do? We suggest asking yourself these questions:

1. Use the construction approach. If you want to list all the configurations that meet the requirement, how are you going to do it
systematically?

2. Are there several cases involved in the problem? If yes, we need to list them first, before we go through each of them one at a
time. Finally, add the results to come up with the final answer.

3. Do we allow repetitions or replacements? This question can also take the form of whether the objects are distinguishable or
indistinguishable.

4. Does order matter? If yes, we have to use permutation. Otherwise, use combination.
5. Sometimes, it may be easier to use the multiplication principle instead of permutation, because repetitions may be allowed (in

which case, we cannot use permutation, although we can still use the multiplication principle). Try drawing a schematic
diagram and decide what we need from it. If the analysis suggests a pattern that follows the one found in a permutation, you can
then use the formula for permutation.

6. Do not forget: it may be easier to work with the complement.

It is often not clear how to get started because there seem to be several ways to start the construction. For example, how would you
distribute soda cans among a group of students? There are two possible approaches:

From the perspective of the students. Imagine you are one of the students, which soda would you receive?
From the perspective of the soda cans. Imagine you are holding a can of soda, to whom would you give this soda?

Depending on the actual problem, usually only one of these two approaches would work.

Example 
Suppose we have to distribute 10 different soda cans to 20 students. It is clear that some students may not get any soda. In fact,
some lucky students could receive more than one soda (the problem does not say this cannot happen). Hence, it is easier to start
from the perspective of the soda cans.

Solution

We can give the first soda to any one of the 20 students, and we can also give the second soda to any one of the 20 students.
In fact, we always have 20 choices for each soda. Since we have 10 sodas, there are  ways to distribute

the sodas.

Example 
In how many ways can a team of three representatives be selected from a class of 885 students? In how many ways can a team
of three representatives consisting of a chairperson, a vice-chairperson, and a secretary be selected?

Solution

If we are only interested in selecting three representatives, order does not matter. Hence, the answer would be . If we
are concerned about which offices these three representative will hold, then the answer should be .

hands-on Exercise 

( )= 1, ( )= 7, ( )= 217
0

7
1

7
2

( ) = 35.
7

3
(7.4.15)

7.4.5

=20 ⋅ 20⋯20
  

10

2010

7.4.6

( )885
3

P (885, 3)

7.4.5

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/28660?pdf


7.4.5 https://math.libretexts.org/@go/page/28660

Mike needs some new shirts, but he has only enough money to purchase five of the eight that he likes. In how many ways can he
purchase the five shirts by choosing them at random?

hands-on Exercise 

Mary wants to purchase four shirts for her four brothers, and she would like each of them to receive a different shirt. She finds
ten shirts that she thinks they will like. In many ways can she select them?

Playing cards provide excellent examples for counting problems. Just in case you are not familiar with them, let us briefly review
what a deck of playing cards contains.

There are 52 playing cards, each of them is marked with a suit and a rank.
There are four suits: spades ( ), hearts ( ), diamonds ( ) and clubs ( ).
Each suit has 13 ranks, labeled A, 2, 3, …, 9, 10, J, Q, and K, where A means ace, J means jack, Q means queen, and K means
king.
Each rank has 4 suits (see above).

hands-on Exercise 

Determine the number of five-card poker hands that can be dealt from a deck of 52 cards.

Solution

All we care is which five cards can be found in a hand. This is a selection problem. The answer is .

hands-on exercise 

In how many ways can a 13-card bridge hand be dealt from a standard deck of 52 cards?

Example 

In how many ways can a deck of 52 cards be dealt in a game of bridge? (In a bridge game, there are four players designated as
North, East, South and West, each of them is dealt a hand of 13 cards.)

Solution

The difference between this problem and the last example is that the order of distributing the four bridge hands makes a
difference. This is a problem that combines permutations and combinations. As we had suggested earlier, the best approach
is to start from scratch, using the addition and/or multiplication principles, along with permutation and/or combination
whenever it seems appropriate.

There are  ways to give 13 cards to the first player. Now we are left with 39 cards, from which we select 13 to be given
to the second player. Now, out of the remaining 26 cards, we have to give 13 to the third player. Finally, the last 13 cards will
be given to the last player (there is only one way to do it). The number of ways to deal the cards in a bridge game is 

.

We could have said the answer is

The last factor  is the number of ways to give the last 13 cards to the fourth player. Numerically, , so the two
answers are the same. Do not dismiss this extra factor as redundant. Take note of the nice pattern in this answer. The bottom
numbers are 13, because we are selecting 13 cards to be given to each player. The top numbers indicate how many cards are
still available for distribution at each stage of the distribution. The reasoning behind the solution is self-explanatory!

[eg:combin-08]

Example 

7.4.6

♠ ♡ ♢ ♣

7.4.7

( )52
5

7.4.7

7.4.8

( )52
13

( )( )( )52
13

39
13

26
13

( )( )( )( ).
52

13

39

13

26

13

13

13
(7.4.16)

( )13
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Determine the number of five-card poker hands that contain three queens. How many of them contain, in addition to the three
queens, another pair of cards?

Solution

(a) The first step is to choose the three queens in  ways, after which the remaining two cards can be selected in  ways.
Therefore, there are altogether  hands that meet the requirements.

Solution

(b) As in part (a), the three queens can be selected in  ways. Next, we need to select the pair. We can select any card from
the remaining 48 cards (therefore, there are 48 choices), after which we have to select one from the remaining 3 cards of the
same rank. This gives  choices for the pair, right? The answer is NO!

The first card we picked could be , and the second could be . However, the first card could have been , and the
second . These two selections are counted as different selections, but they are actually the same pair! The trouble is, we
are considering “first,” and “second” cards, which in effect imposes an ordering among the two cards, thereby turning it into
a sequence or an ordered selection. We have to divide the answer by 2 to overcome the double-counting. The answer is
therefore .

Here is a better way to count the number of pairs. An important question to ask is

Which one should we pick first: the suit or the rank?
Here, we want to pick the rank first. There are 12 choices (the pair cannot be queens) for the rank, and among the four cards
of that rank, we can pick the two cards in  ways. Therefore, the answer is . Numerically, the two answers are
identical, because . In summary: the final answer is .

hands-on Exercise 

How many bridge hands contain exactly four spades?

hands-on Exercise 
How many bridge hands contain exactly four spades and four hearts?

hands-on Exercise 
How many bridge hands are there containing exactly four spades, three hearts, three diamonds, and three clubs?

Example 
How many positive integers not exceeding 99999 contain exactly three 7s?

Solution

Regard each legitimate integer as a sequence of five digits, each of them selected from 0, 1, 2, …, 9. For example, the
integer 358 can be considered as 00358. Three out of the five positions must be occupied by 7. There are  ways to select
these three slots. The remaining two positions can be filled with any of the other nine digits. Hence, there are  such
integers.

Example 

How many five-digit positive integers contain exactly three 7s?

Solution

Unlike the last example, the first of the five digits cannot be 0. Yet, the answer is not . Yes, there are  choices for
the placement of the three 7s, but some of these selections may have put the 7s in the last four positions. This leaves the first
digit unfilled. The nine choices counted by 9 allows a zero to be placed in the first position. The result is, at best, a four-digit
number. The correct approach is to consider two cases:

( )4
3

( )48
2

( )( )4
3

48
2

( )43

48 ⋅ 3

♡8 ♣8 ♣8

♡8

48⋅3

2

( )4
2

12( )4
2

12( )= 12 ⋅ =4
2

4⋅3

2

48⋅3

2
( ) ⋅ 12( )4
3

4
2

7.4.8

7.4.9

7.4.10

7.4.10

( )5
3

( ) ⋅5
3
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7.4.11
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3

( )5
3
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Case 1. If the first digit is not 7, then there are eight ways to fill this slot. Among the remaining four positions, three of them
must be 7, and the last one can be any digit other than 7. So there are  integers in this category.

Case 2. If the first digit is 7, we still have to put the other two 7s in the other four positions. There are  such integers.

Together, the two cases give a total of  integers.

hands-on Exercise 
Five balls are chosen from a bag of eight blue balls, six red balls, and five green balls. How many of these five-ball selections
contain exactly two blue balls?

Example 
Find the number of ways to select five balls from a bag of six red balls, eight blue balls and four yellow balls such that the five-
ball selections contain exactly two red balls or two blue balls.

Solution

The keyword “or” suggests this is a problem that involves the union of two sets, hence, we have to use PIE to solve the
problem.

How many selections contain two red balls? Following the same argument used in the last example, the answer is 
.

How many selections contain two blue balls? The answer is .

According to PIE, the final answer is

In each term, the upper numbers always add up to 18, and the sum of the lower numbers is always 5. Can you explain
why?

How many selections contain two red balls and 2 blue balls? The answer is .

Example 

We have 11 balls, five of which are blue, three of which are red, and the remaining three are green. How many collection of four
balls can be selected such that at least two blue balls are selected? Assume that balls of the same color are indistinguishable.

Solution

The keywords “at least” mean we could have two, three, or four blue balls. There are

ways to select four balls, with at least two of them being blue.

hands-on Exercise 
Jerry bought eight cans of Pepsi, seven cans of Sprite, three cans of Dr. Pepper, and six cans of Mountain Dew. He want to bring
10 cans to his pal’s house when they watch the basketball game tonight. Assuming the cans are distinguishable, say, with
different expiration dates, how many selections can he make if he wants to bring

1. Exactly four cans of Pepsi?
2. At least four cans of Pepsi?
3. At most four cans of Pepsi?
4. Exactly three cans of Pepsi, and at most three cans of Sprite?

8 ⋅ ( ) ⋅ 94
3

( ) ⋅4
2

92

8 ⋅ ( ) ⋅ 9 +( ) ⋅ = 7744
3

4
2 92
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The proof of the next result uses what we call a combinatorial or counting argument. In general, a combinatorial argument does not
rely on algebraic manipulation. Rather, it uses the combinatorial significance of the situations to solve the problem.

Theorem 

Prove that  for all nonnegative integers .

Proof

Since  counts the number of -element subsets selected from an -element set , the summation on the left is the sum of
the number of subsets of  of all possible cardinalities. In other words, this is the total number of subsets in . We learned
earlier that  has  subsets, which establishes the identity immediately.

Summary and Review
Use permutation if order matters, otherwise use combination.
The keywords arrangement, sequence, and order suggest using permutation.
The keywords selection, subset, and group suggest using combination.
It is best to start with a construction. Imagine you want to list all the possibilities, how would you get started?
We may need to use both permutation and combination, and very likely we may also need to use the addition and multiplication
principles.

Exercises 

Exercise 
If the Buffalo Bills and the Cleveland Browns have eight and six players, respectively, available for trading, in how many ways
can they swap three players for three players?

Solution

.

 

Exercise 
In the game of Mastermind, one player, the codemaker, selects a sequence of four colors (the “code”) selected from red, blue,
green, white, black, and yellow.

a) How many different codes can be formed?

b) How many codes use four different colors?

c) How many codes use only one color?

d) How many codes use exactly two colors?

e) How many codes use exactly three colors?

Exercise 
Becky likes to watch DVDs each evening. How many DVDs must she have if she is able to watch every evening for 24
consecutive evenings during her winter break?

a) A different subset of DVDs?

b) A different subset of three DVDs? 
 

Solution

( ) =∑n

r=0

n

r
2

n
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( )=∑n
r=0

n
r 2n n

( )n
r

r n S

S S

S 2n
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8
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(a) at least 5 (b) at least 7

Exercise 
Bridget has  friends from her bridge club. Every Thursday evening, she invites three friends to her home for a bridge game.
She always sits in the north position, and she decides which friends are to sit in the east, south, and west positions. She is able to
do this for 200 weeks without repeating a seating arrangement. What is the minimum value of ?

Exercise 
Bridget has  friends from her bridge club. She is able to invite a different subset of three of them to her home every Thursday
evening for 100 weeks. What is the minimum value of ?

Solution

10.

Exercise 
How many five-digit numbers can be formed from the digits 1, 2, 3, 4, 5, 6, 7? How many of them do not have repeated digits?

Exercise 
The Mathematics Department of a small college has three full professors, seven associate professors, and four assistant
professors. In how many ways can a four-member committee be formed under these restrictions:

a) There are no restrictions.

b) At least one full professor is selected.

c) The committee must contain a professor from each rank.

Solution

(a)  (b)  (c) 

Exercise 
 A department store manager receives from the company headquarters 12 football tickets to the same game (hence they can be
regarded as “identical”). In how many ways can she distribute them to 20 employees if no one gets more than one ticket? What
if the tickets are for 12 different games?

Exercise 
A checkerboard has 64 distinct squares arranged into eight rows and eight columns.

a) In how many ways can eight identical checkers be placed on the board so that no two checkers can occupy the same row or
the same column?

b) In how many ways can two identical red checkers and two identical black checkers be placed on the board so that no two
checkers of the same color can occupy the same row or the same column?

Solution

(a)  (b) 

Exercise 
Determine the number of permutations of  that satisfy the following conditions:

a)  occupies the first position.

b)  occupies the first position, and  the second.

7.4.4

n

n

7.4.5

n

n
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7.4.7
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4
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3
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2
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c)  appears before .

Exercise 

A binary string is a sequence of digits chosen from 0 and 1. How many binary strings of length 16 contain exactly seven 1s?

Solution

.

Exercise 
In how many ways can a nonempty subset of people be chosen from eight men and eight women so that every subset contains
an equal number of men and women?

Exercise 

A poker hand is a five-card selection chosen from a standard deck of 52 cards. How many poker hands satisfy the following
conditions?

a) There are no restrictions.

b) The hand contains at least one card from each suit.

c) The hand contains exactly one pair (the other three cards all of different ranks).

d) The hand contains three of a rank (the other two cards all of different ranks).

e) The hand is a full house (three of one rank and a pair of another).

f) The hand is a straight (consecutive ranks, as in 5, 6, 7, 8, 9, but not all from the same suit).

g) The hand is a flush (all the same suit, but not a straight).

h) The hand is a straight flush (both straight and flush).

Solution

(a)  (b)  (c)  (d) 

(e)  (f)  (g)  (h) 

Exercise 
A local pizza restaurant offers the following toppings on their cheese pizzas: extra cheese, pepperoni, mushrooms, green
peppers, onions, sausage, ham, and anchovies.

a) How many kinds of pizzas can one order?

b) How many kinds of pizzas can one order with exactly three toppings?

c) How many kinds of vegetarian pizza (without pepperoni, sausage, or ham) can one order?

Exercise 
Write the numbers for the 8-row for Pascal's Triangle.

Solution

     

Exercise 
In terms of selecting objects and Pascal's Triangle, explain why

A B
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( )16
7
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7.4.13

( )52
5

4 ( )13
2

133 13 ( )( )4
2

12
3

43 13 ( )( )4
3

12
2

42

13 ( ) 12 ( )4
3

4
2

10 ⋅ ( −4)45 4 [( )−10]13
5

4 ⋅ 10
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(a) 

(b) 

(c)  is the third number in the 8-row rather than the second number

 
 

Exercise 
Use the 8-row of Pascal's Triangle to find

(a) 

(b) 

(c) 

Solution

(a) 70          (b) 28        (c) 

This page titled 7.4: Combinations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .
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7.5: Combinations WITH Repetitions
Consider our choice of  people out of  Discrete students.

Permutations include all the different arrangements, so we say "order matters" and there are  ways to choose   people out
of  to be president, vice-president and janitor. Steve, Ahmet, Liz (SAL) v.s Liz, Ahmet, Steve (LAS) are two different
arrangements.

For combinations, we chose  people out of  to get an A for the course so order does not matter.  This is "  choose ", the
number of sets of 3 where order does not matter. SAL and LAS are the same arrangement. This one is .

In both permutations and combinations, repetition is not allowed.  LLA is not a choice.

Now we move to combinations with repetitions.  Here we are choosing  people out of  Discrete students, but we allow for
repeated people.  These are combinations, so SAL and LAS are still the same choice, but we have other distinct choices such as
LLA, SSS, WAW, SWW, and many more!

Example  First example
Determine the number of ways to choose 3 tea bags to put into the teapot.  You have 100 each of these six types of tea: Black
tea, Chamomile, Earl Grey, Green, Jasmine and Rose. (Essentially you have an unlimited number of each type of tea.).  You can
repeat types of tea.

For example, some choices are:  CEJ, CEE, JJJ, GGR, etc.           

type of tea: Black Chamomile Earl Grey Green Jasmine Rose

choices: x  xx    

# of choices: 1 0 2 0 0 0

 

This arrangement is BEE.

           

type of tea: Black Chamomile Earl Grey Green Jasmine Rose

choices:    xx  x

# of choices: 0 0 0 2 0 1

 This arrangement is GGR.

Reduce this table as follows: Black | Chamomile | Earl Grey | Green | Jasmine | Rose

to just  dividers:                           |                 |               |           |             | 

Our 6 types of tea gives us 5 dividers.

We are choosing 3 tea bags, so we need 3 x's along with the 5 dividers.

Here are the two choices on the tables above:   x | | x x | | |       and   |  |  | x x | | x.

What are the letters for these two choices?      | |  | | xx|x       and   x|  | x | x | | .    

Answer

JJR      and   BEG

We are arranging 8 objects (5 dividers and 3 choices of tea bags), so we have 8 spots to put the 3 tea bags. 

______   ______   ______   ______    ______   ______    ______   ______       

Once we place the 3 tea bags, the placement of the 5 dividers is automatically determined.

3 20

P (20, 3) 3

20

3 20 20 3

( )20
3

3 20
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There are  ways to pick the 3 tea bags.

Where did the  and  come from? See the following theorem.

 

 Combination with Repetition formula 

Theorem 
If we choose a set of   items from  types of items, where repetition is allowed and the number items we are choosing from is
essentially unlimited, the number of selections possible:

 

Example  Example with Restrictions

From an unlimited selection of five types of soda, one of which is Dr. Pepper, you are putting 25 cans on a table.

(a) Determine the number of ways you can select 25 cans of soda.

Solution

This is the case with no restrictions.   
There are 23751 ways to select 25 cans of soda with five types.

(b) Determine the number of ways you can select 25 cans of soda if you must include at least seven Dr. Peppers.

Solution

Here figure seven Dr. Peppers are already selected, so you are really choosing  cans.   
There are 7315 ways to select 25 cans of soda with five types, with at least seven of one specific type.

(c) Determine the number of ways you can select 25 cans of soda if it turns out there are only three Dr. Peppers available.

Solution

This is harder to do directly, and easier to use the complement.  The complement is "four or more Dr. Peppers" which is at
least four Dr. Peppers. 
Following our reasoning in (b), the number of ways to select 25 cans with at least four Dr. Peppers is 

 
So there are 12650 ways to get four or more Dr. Peppers.  We need to subtract that from the total in order to get the number
of three or less Dr. Peppers. 

 
There are 11101 ways to select 25 cans of soda with five types, with no more than three of one specific type.

Summary and Review
Permutations: order matters, repetitions are not allowed.
(regular) Combinations: order does NOT matter, repetitions are not allowed.
Combinations WITH Repetitions: order does NOT matter, repetitions ARE allowed.

Exercises 

Exercise 
Lollypop Farm has cats, dogs, goats, ducks and horses.  How many ways can you select three pets to take home?

( )8
3

8 3

7.5.1

r n

( ).
n+r−1

r
(7.5.1)
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( ) = ( ) = 237515+25−1
25

29
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18
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21

25
21
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25
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Solution

 

Exercise 

You are going to bring two bags of chips to a party. In the chip aisle, you see regular potato chips, barbecue potato chips, sour
cream and onion potato chips, corn chips and scoopable corn chips. How many selections can you make?

Exercise 

(a) Compute  (to an integer).

(b) If you had to compute  without a calculator, how could you simplify the calculations?

(c) Fill in the blanks to create a problem whose solution is the formula in (a):

You are sitting with a number of friends and go to get ____________cans of soda for your table.  There are __________types of
soda.  How many selections can you make?

Solution

(a) 330 
(b)  
(c) get 7 cans of soda; 5 types of soda

Exercise 
You are setting out 30 cans of drinks.  There are six types of drinks, and one type is seltzer.

(a) How many ways can you choose drinks to set out?

(b) How many ways can you choose drinks to set out that include at least 8 cans of seltzer?

(c) How many ways can you choose drinks to set out if there are only 5 cans of seltzer available?

Exercise 

Twenty batteries will be put on the display.  The types of batteries are: AAA, AA, C, D, and 9-volt.

(a) How many ways can we choose the twenty batteries?

(b) How many ways can we choose the twenty batteries but be sure that at least four batteries that are are 9-volt batteries?

(c) How many ways can we choose the twenty batteries but have no more than two batteries that are 9-volt batteries?

Solution

(a)  
 
(b)  
 
(c) 

Exercise 

Use the tea bags from Example 7.5.1: Black, Chamomile, Earl Grey, Green, Jasmine and Rose for these questions.

(a) You are making a cup of tea for the Provost, a math professor and a student.  How many ways can you do this?

(b) You are making a cup of tea for the Provost, a math professor and a student.  Each person will have a different flavor.  How
many ways can you do this?

( ) = 357
3

7.5.2

7.5.3

( )5+7−1
7

( )5+7−1
7

( ) = ( ) = ( ) = = = 11 ⋅ 10 ⋅ 3 = 110 ⋅ 3 = 3305+7−1
7

11
7

11
4

11⋅10⋅9⋅8

4⋅3⋅2⋅1

11⋅10⋅9

3
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( ) = 1062624
20
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16
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20
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(c) You are making a pot of tea with four tea bags.  How many ways can you do this?

(d) You are making a pot of tea with four tea bags, each a different flavor.  How many ways can you do this?

(e) You are setting out 30 tea bags.  How many ways can you do this?

(f) You are setting out 30 tea bags, but there are only five Rose tea bags available.  How many ways can you do this?

(g) You are setting out 30 tea bags and will include at least 10 Earl Grey.  How many ways can you do this?

Exercise 
How many non-negative integer solutions are there to this equation:

Solution

 

Exercise 
How many non-negative solutions are there to this equation:

This page titled 7.5: Combinations WITH Repetitions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Harris Kwong (OpenSUNY) .
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7.6: The Binomial Theorem
A binomial is a polynomial with exactly two terms. The binomial theorem gives a formula for expanding  for any positive
integer .

How do we expand a product of polynomials? We pick one term from the first polynomial, multiply by a term chosen from the
second polynomial, and then multiply by a term selected from the third polynomial, and so forth. In the special case of ,
we are selecting either  or  from each of the  binomials  to form a product. Some of these products will be identical,
hence, we need to collect their coefficients. The expansion of  is demonstrated below.

We find

What happens when we expand ?

If we select  from  copies of the s, and  from the other  copies, their product will be . Therefore, in the
expansion of , a typical term will be of the form , where . The question is, what is its coefficient in the
expansion, after we collect like terms? This coefficient is the number of times the product  appears when we multiply out 

 in the way described above. It depends on which  copies of the s we will choose  from. There are  choices,
hence, the product  appears  times. Thus, the coefficient is . For this reason, we also call  the binomial
coefficients.

Theorem  (Binomial Theorem)

For any positive integer ,

Because of the symmetry in the formula, we can interchange  and . In addition, we also have . Consequently, the
binomial theorem can be written in three other forms:

You need not worry which one to use. They are all the same! This is how to remember these four different forms. In each term, the
powers of  and  always add up to . If the power of one of the two variables is , where , then the power of the other
must be , and we need to multiply the coefficient , which is the same as , to their product.

When expanding , it may be helpful if you first lay out all the terms , , , and so forth. Then you fill in
with the binomial coefficients. For instance, to expand , we first list all the terms that we expect fo find:

Next we fill in the binomial coefficients:
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x y n x+y
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Finally, evaluate the binomial coefficients and simplify the result.

In a similar way, we also find . Note the similarity between the two expansions.

Example 
Compute .

Solution

Following the steps we outlined above, we find

Since , the expansion always starts with  and ends with .

Example 

Compute .

Solution

We find

Take note of the alternating signs in the expansion. This suggests that we could expand  the exact same way we
would with , except that the signs alternate.

We can carry out the expansion by following these steps. First, list all the terms we expect to find

Next, fill in the signs:

and then the binomial coefficients:

Finally, compute the binomial coefficients to finish the expansion.

Example 

Expand .

Solution

The expansion yields

Therefore, .

(x+y = +3 y +3x + .)3 x3 x2 y2 y3

(x−y = −3 y +3x −)3 x3 x2 y2 y3

7.6.1

(x+y)4

(x+y)4 =( ) +( ) y +( ) +( )x +( )
4

0
x4 4

1
x3 4

2
x2y2 4

3
y3 4

4
y4

= +4 y +6 +4x + .x4 x3 x2y2 y3 y4

( )= ( )= 1n
0

n
n xn yn

7.6.2

(x−y)4

(x−y)4 = [x+(−y)]4

=( ) +( ) (−y)+( ) (−y +( )x(−y +( )(−y
4

0
x4 4

1
x3 4

2
x2 )2

4

3
)3

4

4
)4

= −4 y +6 −4x + .x4 x3 x2y2 y3 y4

(A−B)n

(A+B)n

(x+y = y x .)4  
–

x4  
–

x3  
–

x2y2  
–

y3  
–

y4 (7.6.1)

(x+y = − y + − x + ,)4  –x4  –x3  –x2y2  – y3  – y4 (7.6.2)

(x+y =( ) −( ) y +( ) −( )x +( ) .)4
4

0
x4 4

1
x3 4

2
x2y2 4

3
y3 4

4
y4 (7.6.3)

7.6.3

(2x−3y)5

(2x −( )(2x (3y)+( )(2x (3y −( )(2x (3y +( )(2x)(3y −(3y .)5
5

1
)4

5

2
)3 )2

5

3
)2 )3

5

4
)4 )5 (7.6.4)

(2x−3y = 32 −240 y +720 −1080 +810x −243)5 x5 x4 x3y2 x2y3 y4 y5
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hands-on Exercise 
Use the binomial theorem to expand .

Example 
Find the coefficient of  in the expansion of .

Solution

Since

the term containing  is . Therefore, the coefficient is . Depending on which form of the binomial theorem you
use, you may end up with the term . Numerically, this gives us the same coefficient, because 

.

Example 
 What is the coefficient of  in the expansion of ?

Solution

Since

we need . The coefficient is .

Example 
What is the coefficient of  in the expansion of ?

Solution

Since , we need , and the coefficient is 
.

hands-on Exercise 
What is the coefficient of  in ?

hands-on Exercise 
What is the coefficient of  in the expansion of ?

Example 

What is the coefficient of  in the expansion of ?

Solution

The general term in the expansion is . Hence, we need , and the coefficient is 
.

hands-on Exercise 

7.6.1

(3x−5y)4

7.6.4

x3 (1+x)102

(1+x = ( ) ,)102 ∑
k=0

102 102

k
xk (7.6.5)

x3 ( )102
3

x3 ( )102
3

( )102
99

x3

( )= ( )= ( )102
99

102
102−99

102
3

( )= 171700.102
3

7.6.5

t4 (2+3t)9

(2+3t = ( ) (3t ,)9 ∑
k=0

9 9

k
29−k )k (7.6.6)

k = 4 ( ) ⋅ = 126 ⋅ 32 ⋅ 81 = 326, 5929
4
25 34

7.6.6

t5 (3−2t)7

(3−2t = ( ) (−2t)7 ∑7
k=0

7
k 37−k )k k = 5

( ) ⋅ (−2 =−( ) ⋅ = −21 ⋅ 9 ⋅ 32 =−60487
5
32 )5 7

5
32 25

7.6.2

t5 (1+3t)8

7.6.3

t4 (2−5t)9

7.6.7

t6 (4+5t2)8

( ) (5 = ( ) ⋅8
k
48−k t2)k 8

k
48−k 5kt2k k = 3

( ) ⋅ = 56 ⋅ 1024 ⋅ 125 = 7, 168, 0008
3 45 53

7.6.4
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What is the coefficient of  in the expansion of ?

The constant term in an expansion does not contain any variable. It can be interpreted as the term containing .

Example 

What is the term with  in 

Solution

The general term in the expansion is

 
Since , the term is  
This is 

Therefore, the term is .

Pascal's Triangle

(See an introduction to Pascal's Triangle in section 7.4)

To compute the binomial coefficients quickly, one may use the Pascal triangle, in which the th row ( ) consists of the
binomial coefficients , where :

Constructing the Pascal triangle is easy. We generate the rows one at a time. The extreme ends are always 1. Each of the interior
entries is the sum of the two entries right above it in the preceding row. For instance, the next row (for ) should be

Such computations produce the right binomial coefficients, because of the next result.

Theorem  (Pascal's Identitity)
For all integers  and  satisfying ,

(Analytic Proof)

It follows from the definition of binomial coefficients that

t9 (3−2t3)8

x0

7.6.8

y3 ?(3x+5y)8

( )(3x .
8

k
)8−k(5y)k (7.6.7)

k = 3 ( )(3x .8
3 )5(5y)

3

56 ⋅ (243) ⋅ (125) .x5 y3

1701000x5y3

n n ≥ 0

( )n

k
0 ≤ k ≤ n

1

1

1

6

1

5

1

4

15

1

3

10

1

2

6

20

1

3

10

1

4

15

1

5

1

6

1

1

(7.6.8)

n = 7

1 7 21 35 35 21 7 1 (7.6.9)

7.6.2

n k 1 ≤ k ≤ n

( ) =( )+( ).
n

k

n−1

k

n−1

k−1
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This completes the proof.

(Combinatorial Proof)

Let  be an -element set. Then  counts the number of -element subsets of . These subsets can be classified
according to whether they contain a fixed element, say . If a subset contains , then the other  elements must be
selected from the remaining  elements of . Otherwise, if the subset does not contain , then all its  elements must
be selected from the other  elements of . The numbers of these two kinds of subsets are given by  and ,
respectively. The theorem now follows immediately by applying the addition principle.

hands-on Exercise 
Determine the 8th and the 9th rows in the Pascal’s triangle.

Example 

Use the Pascal’s triangle to expand

a. 
b. 
c. 

Solution

Draw the values of  from the Pascal triangle directly. The answers are:

a. .
b. .
c. .

Summary and Review
The binomial theorem can be expressed in four different but equivalent forms.
The expansion of  starts with , then we decrease the exponent in  by one, meanwhile increase the exponent of  by
one, and repeat this until we have .
The next few terms are therefore , , etc., which end with .
In general, the sum of exponents in  and  is always . Hence, the general term is , whose coefficient is .
The expansion of  and  look almost identical, except that the signs in  alternate.

Exercises 

Exercise 
Expand 

Answer

Exercise 

( )+( )
n−1

k−1

n−1

k
= +

(n−1)!

(k−1)! (n−k)!

(n−1)!

k! (n−k−1)!

= ( + )
(n−1)!

(k−1)! (n−k−1)!

1

n−k

1

k

= ⋅
(n−1)!

(k−1)! (n−k−1)!

n

k(n−k)

= .
n!

k! (n−k)!

A n ( )n

k
k A

x x k−1

n−1 A x k

n−1 A ( )n−1
k−1 ( )n−1

k

7.6.7

7.6.10

(C −D)5

(2A+5B)3

(3C −4B)4

( )n
k

(C −D = −5 D+10 −10 +5C −)5 C 5 C 4 C 3D2 C 2D3 D4 D5

(2a+5B = 8 +60 B+150A +125)3 A3 A2 B2 B3

(3C −4B = 81 −432 B+864 −768C +256)4 C 4 C 3 C 2B2 B3 B4

(x+y)n xn x y

yn

yxn−1 xn−2y2 yn

x y n xkyn−k ( )n
k

(x+y)n (x−y)n (x−y)n

7.6.1

(x−2y)4

−8 y +24 −32x +16x4 x3 x2y2 y3 y4

7.6.2
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Find the coefficient of  in 

Exercise 

Find the coefficient of  in 

Answer

The term is , so the coefficient is 

Exercise 

Expand 

Exercise 

Find the coefficient of   in 

Answer

The term is , so the coefficient is 

Exercise 

Find the coefficient of  in  

Exercise 

What is the term in  with 

Answer

The term is , so the term is 

Exercise 

What is the term in  with 

This page titled 7.6: The Binomial Theorem is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong
(OpenSUNY) .

x11y3 (x+y .)14

7.6.3

x4y7 (2x−y .)11

( ) ⋅ (−111
4

24 x4 )7y7 330 ⋅ 16 ⋅−1 =−5280.

7.6.4

(3a−b)5

7.6.5

y5 (2x+3y .)7

( ) ⋅ ⋅7
5 22 x2 35y5 21 ⋅ 4 ⋅ 243 = 20, 412.

7.6.6

y3 (5x−2y .)5

7.6.7

(2x+7y)6 ?y2

( ) ⋅ ⋅6
2 24 x4 72y2 15 ⋅ 16 ⋅ 49 = 11760x4y2 x4y2

7.6.8

(x−3y)8 ?x5
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8.1: Big O

Big O

The idea of Big O is to characterize functions according to their growth rates. The O refers to the order of a function. In computer
science, Big O is used to classify algorithms for their running time or space requirements.

Notice in the figure below that  right before .  However, for , we see that   In the long run
(namely after )  overtakes 

We say "  is of order at most " or "  is Big O of " .

We write:                

 

In our definition of Big O notation, there are certain parameters.

We use  greater than a certain initial value, ; in the diagram above, .
We use absolute value for both functions.
We use  as a constant multiplied by the function inside the O.

Definition: Big O Notation

if and only if           there exist real numbers  with  such that

Example 
Take this statement and express it in Big O notation:    for 

Solution

Comparing orders of common functions

A constant function, such as  does not grow at all.  Logarithmic functions grow very slowly. Here is a list of some
common functions in increasing order of growth rates.

constant function, logarithmic function, polynomial function, exponential function

Example 

f(x) > g(x) x = 1 x > 1 g(x) > f(x).

x > 1 g(x) f(x).

f g f(x) g(x)

f(x) = O(g(x)).

x n n = 1

k

f(x) = O(g(x)). (8.1.1)

k, n k > 0, n ≥ 0

|f(x)| ≤ k|g(x)| ∀x > n. (8.1.2)

8.1.1

|7 +4 +x| ≤ 14| |x5 x3 x5 x > 1.

(7 +4 +x) is O( )x5 x3 x5

f(x) = 6

8.1.2
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Put these functions in order of increasing growth rates:

  

Solution

   
 

Proofs

We will be using the Triangle Inequality Theorem which is

Example 
Prove:   

Proof

Choose , i.e.  
 

 
 

 
 

 
Thus  for all   
 
Therefore, using  and ,    by the definition of Big O. 

Summary and Review
Big O is used to compare the growth rates of functions.
Be sure to understand the examples here.

Exercises 

exercise 
True or False?

(a) 

(b) 

(c) 

Answer

(a) false 
(b) true 
(c) false

Exercise 

True or False?

x, , , , x, 100 , 64x +1000, x, , 6log6 x5 2x x2 log15 x4 x5 log6 5x (8.1.3)

6, x, x, 64x +1000, , 100 , , x, ,log6 log15 x2 x4 x5 x5 log6 2x 5x (8.1.4)

|x +y|  ≤ |x| + |y|. (8.1.5)

8.1.3

4 −11 +3x −2 = O( )x3 x2 x3

n = 1 x ≥ 1.

|4 −11 +3x −2| ≤ |4 | +| −11 | +|3x| + | −2|  by the Triangle Inequality Theoremx3 x2 x3 x2

= 4 +11 +3x +2  applying absolute value; note: x is positivex3 x2

≤ 4 +11 +3 +2  since x is positive and greater than 1x3 x3 x3 x3

= 20x3

= 20| |  since x is positive and greater than 1x3

x ≥ 1, |4 −11 +3x −2| ≤ 20| |x3 x2 x3

n = 1 k = 20 4 −11 +3x −2 = O( )x3 x2 x3

8.1.1

11 = O(87 )x3 x2

= O( )x13 3x

−2x = O(58 x)log35

8.1.2
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(a) 

(b) 

(c) 

(d) 

Exercise 
True or False?

(a) 

(b) 

(c) 

Answer

all true

Exercise 

Prove:   

Example 
Put these functions in order of increasing growth rates:

  

Answer

  

Exercise 
Take this statement and express it in Big O notation:    for 

This page titled 8.1: Big O is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Harris Kwong (OpenSUNY) .

4 +12 +36 = O( )x3 x2 x3

.01 = O(48 )x5 x4

= O( )4x x7

3x x = O(25x)log2

8.1.3

23 lnx = O(3x)

7 = O( )x5 x5

= O(7 )x5 x5

8.1.4

2 +3 − +5x = O( )x5 x4 x3 x5

8.1.5

, , 78 , log x, 1000x, 7, xx7 6x x2 x2 log11 (8.1.6)

7, x, 1000x, 78 , log x, ,log11 x2 x2 x7 6x (8.1.7)

8.1.6

|2 −5 + −5| ≤ 13| |x4 x3 x2 x4 x > 1.
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A.1: Cardinality-additional info

Basic Theory

Definitions

Suppose that  is a non-empty collection of sets. We define a relation  on  by  if and only if there exists a one-to-
one function  from  onto . The relation  is an equivalence relation on . That is, for all ,

a. , the reflexive property
b. If  then , the symmetric property
c. If  and  then , the transitive property

Proof

a. The identity function  on , given by  for , maps  one-to-one onto . Hence .

b. If  then there exists a one-to-one function  from  onto . But then  is a one-to-one function from  onto ,
so .

c. Suppose that  and . Then there exists a one-to-one function  from  onto  and a one-to-one function 
from  onto . But then  is a one-to-one function from  onto , so .

A one-to-one function  from  onto  is sometimes called a bijection. Thus if  then  and  are in one-to-one
correspondence and are said to have the same cardinality. The equivalence classes under this equivalence relation capture the
notion of having the same number of elements.

Let , and for , let . As always,  is the set of all natural numbers.

Suppose that  is a set.

a.  is finite if  for some , in which case  is the cardinality of , and we write .
b.  is infinite if  is not finite.
c.  is countably infinite if .
d.  is countable if  is finite or countably infinite.
e.  is uncountable if  is not countable.

In part (a), think of  as a reference set with  elements; any other set with  elements must be equivalent to this one. We will
study the cardinality of finite sets in the next two sections on Counting Measure and Combinatorial Structures. In this section, we
will concentrate primarily on infinite sets. In part (d), a countable set is one that can be enumerated or counted by putting the
elements into one-to-one correspondence with  for some  or with all of . An uncountable set is one that cannot be so
counted. Countable sets play a special role in probability theory, as in many other branches of mathematics. Apriori, it's not clear
that there are uncountable sets, but we will soon see examples.

Preliminary Examples

If  is a set, recall that  denotes the power set of  (the set of all subsets of ). If  and  are sets, then  is the set of all
functions from  into . In particular,  denotes the set of functions from  into .

If  is a set then .

Proof

The mapping that takes a set  into its indicator function  is one-to-one and onto. Specifically, if 
 and , then , so the mapping is one-to-one. On the other hand, if  then 

 where . Hence the mapping is onto.

Next are some examples of countably infinite sets.

S ≈ S A ≈ B

f A B ≈ S A, B, C ∈S

A ≈ A

A ≈ B B ≈ A

A ≈ B B ≈ C   A ≈ C

IA A (x) = xIA x ∈ A A A A ≈ A

A ≈ B f A B f −1 B A

B ≈ A

A ≈ B B ≈ C f A B g

B C g ∘ f A C A ≈ C

f A B A ≈ B A B

= ∅N0 k ∈ N+ = {0, 1, … k −1}Nk N = {0, 1, 2, …}

A

A A ≈Nk k ∈ N k A #(A) = k

A A

A A ≈N

A A

A A

Nk k k

Nk k ∈ N N

S P(S) S S A B AB

B A {0, 1}S S {0, 1}

S P(S) ≈ {0, 1}S

A ∈P(S) ∈ {0, 11A }S

A, B ∈P(S) \bs = \bs1A 1B A = B f ∈ {0, 1}S

f = \bs1A A = {x ∈ S : f(x) = 1}
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The following sets are countably infinite:

a. The set of even natural numbers 
b. The set of integers 

Proof

a. The function  given by  is one-to-one and onto.

b. The function  given by  if  is even and  if  is odd, is one-to-one and onto.

At one level, it might seem that  has only half as many elements as  while  has twice as many elements as . as the previous
result shows, that point of view is incorrect: , , and  all have the same cardinality (and are countably infinite). The next
example shows that there are indeed uncountable sets.

If  is a set with at least two elements then , the set of all functions from  into , is uncountable.

Proof

The proof is by contradiction, and uses a nice trick known as the diagonalization method. Suppose that  is countably
infinite (it's clearly not finite), so that the elements of  can be enumerated: . Let  and  denote
distinct elements of  and define  by  if  and  if . Note that . for
each , so . This contradicts the fact that  is the set of allfunctions from  into .

Subsets of Infinite Sets

Surely a set must be as least as large as any of its subsets, in terms of cardinality. On the other hand, by example (4), the set of
natural numbers , the set of even natural numbers  and the set of integers  all have exactly the same cardinality, even though 

. In this subsection, we will explore some interesting and somewhat paradoxical results that relate to subsets of infinite
sets. Along the way, we will see that the countable infinity is the “smallest” of the infinities.

If  is an infinite set then  has a countable infinite subset.

Proof

Select . It's possible to do this since  is infinite and therefore nonempty. Inductively, having chosen 
, select . Again, it's possible to do this since  is not finite. Manifestly, 

 is a countably infinite subset of .

A set  is infinite if and only if  is equivalent to a proper subset of .

Proof

If  is finite, then  is not equivalent to a proper subset by the “pigeonhole principle”. If  is infinite, then  has countably
infinite subset  by the previous result. Define the function  by 
for  and  for . Then  maps  one-to-one onto .

When  was infinite in the proof of the previous result, not only did we map  one-to-one onto a proper subset, we actually threw
away a countably infinite subset and still maintained equivalence. Similarly, we can add a countably infinite set to an infinite set 
without changing the cardinality.

If  is an infinite set and  is a countable set, then .

Proof

Consider the most extreme case where  is countably infinite and disjoint from . Then  has a countably infinite subset 
 by the result above, and  can be enumerated, so . Define the function 

E = {0, 2, 4, …}
Z

f : N → E f(n) = 2n

g : N → Z g(n) = n

2
n g(n) = − n+1

2
n

E N Z N

N E Z

A S = AN N A

S

S S = { , , , …}f0 f1 f2 a b

A g : N → A g(n) = b (n) = afn g(n) = a (n)Neafn gNefn

n ∈ N gNotinS S N A

N E Z

E ⊂N ⊂Z

S S

∈ Sa0 S

{ , , … , } ⊆ Sa0 a1 ak−1 ∈ S ∖ { , , … , }ak a0 a1 ak−1 S

{ , , …}a0 a1 S

S S S

S S S S

{ , , , …}a0 a1 a2 f : S → S f \left(a_n\mathbb{R}ight) = a_{2 n}
n ∈ N f(x) = x x ∈ S ∖ { , , , …}a0 a1 a2 f S S ∖ { , , , …}a1 a3 a5

S S

S

S B S ≈ S ∪ B

B S S

A = { , , , …}a0 a1 a2 B B = { , , , …}b0 b1 b2
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 by  if  is even,  if  is odd, and 
 if . Then  maps  one-to-one onto .

In particular, if  is uncountable and  is countable then  and  have the same cardinality as , and in particular are
uncountable. In terms of the dichotomies finite-infinite and countable-uncountable, a set is indeed at least as large as a subset. First
we need a preliminary result.

If  is countably infinite and  then  is countable.

Proof

It suffices to show that if  is an infinite subset of  then  is countably infinite. Since  is countably infinite, it can be
enumerated: . Let  be the th smallest index such that . Then  and
hence is countably infinite.

Suppose that .

a. If  is finite, then  is finite.
b. If  is infinite, then  is infinite.
c. If  is countable, then  is countable.
d. If  is uncountable, then  is uncountable.

Proof

a. This is clear from the definition of a finite set.

b. This is the contrapositive of (a).

c. If  is finite, then  is countable. If  is infinite, then  is infinite by (b) and hence is countably infinite. But then  is
countably infinite by (9).

d. This is the contrapositive of (c).

Comparisons by one-to-one and onto functions

We will look deeper at the general question of when one set is “at least as big” as another, in the sense of cardinality. Not
surprisingly, this will eventually lead to a partial order on the cardinality equivalence classes.

First note that if there exists a function that maps a set  one-to-one into a set , then in a sense, there is a copy of  contained in 
. Hence  should be at least as large as .

Suppose that  is one-to-one.

a. If  is finite then  is finite.
b. If  is infinite then  is infinite.
c. If  is countable then  is countable.
d. If  is uncountable then  is uncountable.

Proof

Note that  maps  one-to-one onto . Hence  and . The results now follow from (10):

a. If  is finite then  is finite and hence  is finite.

b. If  is infinite then  is infinite and hence  is infinite.

c. If  is countable then  is countable and hence  is countable.

d. If  is uncountable then  is uncountable and hence  is uncountable.

f : S → S ∪ B f\left(a_n\mathbb{R}ight) = a_{n/2} n f\left(a_n\mathbb{R}ight) = b_{(n-1)/2} n

f(x) = x x ∈ S ∖ { , , , …}a0 a1 a2 f S S ∪ B

S B S ∪ B S ∖ B S

S A ⊆ S A

A S A S

S = { , , , …}x0 x1 x2 ni i ∈ Axni
A = { , , , …}xn0

xn1
xn2

A ⊆ B

B A

A B

B A

A B

A A A B A

A B A

B B A

f : A → B

B A

A B

B A

A B

f A f(A) A ≈ f(A) f(A) ⊆ B

B f(A) A

A f(A) B

B f(A) A

A f(A) B
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On the other hand, if there exists a function that maps a set  onto a set , then in a sense, there is a copy of  contained in .
Hence  should be at least as large as .

Suppose that  is onto.

a. If  is finite then  is finite.
b. If  is infinite then  is infinite.
c. If  is countable then  is countable.
d. If  is uncountable then  is uncountable.

Proof

For each , select a specific  with  (if you are persnickety, you may need to invoke the axiom of
choice). Let  be the set of chosen points. Then  maps  one-to-one onto , so  and . The results now
follow from (11):

a. If  is finite then  is finite and hence  is finite.

b. If  is infinite then  is infinite and hence  is infinite.

c. If  is countable then  is countable and hence  is countable.

d. If  is uncountable then  is uncountable and hence  is uncountable.

The previous exercise also could be proved from the one before, since if there exists a function  mapping  onto , then there
exists a function  mapping  one-to-one into . This duality is proven in the discussion of the axiom of choice. A simple and
useful corollary of the previous two theorems is that if  is a given countably infinite set, then a set  is countable if and only if
there exists a one-to-one function  from  into , if and only if there exists a function  from  onto .

If  is a countable set for each  in a countable index set , then  is countable.

Proof

Consider the most extreme case in which the index set  is countably infinite. Since  is countable, there exists a function 
 that maps  onto  for each . Let . Note

that the points in  are distinct, that is,  if  and . Hence  is infinite,
and since ,  is countably infinite. The function  given by  for 
maps  onto , and hence this last set is countable.

If  and  are countable then  is countable.

Proof

There exists a function  that maps  onto , and there exists a function  that maps  onto . Again, let 
 and recall that  is countably infinite. Define 

 by . Then  maps  onto  and hence this
last set is countable.

The last result could also be proven from the one before, by noting that

Both proofs work because the set  is essentially a copy of , embedded inside of . The last theorem generalizes to the
statement that a finite product of countable sets is still countable. But, from (5), a product of infinitely many sets (with at least 2
elements each) will be uncountable.

The set of rational numbers  is countably infinite.

Proof

A B B A

A B

f : A → B

A B

B A

A B

B A

y ∈ B x ∈ A f(x) = y

C f C B C ≈ B C ⊆ A

A C B

B C A

A C B

B C A

f A B

g B A

B A

f A B g B A

Ai i I ⋃i∈I Ai

I Ai

fi N Ai i ∈ N M = \left\{2^i 3^j: (i, j) \in \mathbb{N} \times \mathbb{N}\mathbb{R}ight\}
M Ne2i3j 2m3n (i, j), (m, n) ∈ N×N (i, j)Ne(m, n) M

M ⊂N M f f\left(2^i 3^j\mathbb{R}ight) = f_i(j) (i, j) ∈ N×N

M ⋃i∈I Ai

A B A ×B

f N A g N B

M = \left\{2^i 3^j: (i, j) \in \mathbb{N} \times \mathbb{N} \mathbb{R}ight\} M

h : M → A ×B h\left(2^i 3^j\mathbb{R}ight) = \left(f(i), g(j)\mathbb{R}ight) h M A ×B

A ×B = {a} ×B⋃
a∈A

(A.1.1)

M N×N N

Q
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The sets  and  are countably infinite and hence the set  is countably infinite. The function 
given by  is onto.

A real number is algebraic if it is the root of a polynomial function (of degree 1 or more) with integer coefficients. Rational
numbers are algebraic, as are rational roots of rational numbers (when defined). Moreover, the algebraic numbers are closed under
addition, multiplication, and division. A real number is transcendental if it's not algebraic. The numbers  and  are transcendental,
but we don't know very many other transcendental numbers by name. However, as we will see, most (in the sense of cardinality)
real numbers are transcendental.

The set of algebraic numbers  is countably infinite.

Proof

Let  and let  for . The set  is countably infinite for each . Let .
Think of  as the set of coefficients and note that  is countably infinite. Let  denote the set of polynomials of degree 1 or
more, with integer coefficients. The function  maps  onto , and hence  is
countable. For , let  denote the set of roots of . A polynomial of degree  in  has at most  roots, by the
fundamental theorem of algebra, so in particular  is finite for each . Finally, note that  and so  is
countable. Of course , so  is countably infinite.

Now let's look at some uncountable sets.

The interval  is uncountable.

Proof

Recall that  is the set of all functions from  into , which in this case, can be thought of as infinite
sequences or bit strings:

By (5), this set is uncountable. Let 
, the set of bit strings that

eventually terminate in all 1s. Note that  where 
. Clearly  is finite for all 

, so  is countable, and therefore  is uncountable. In fact, . The function

maps  one-to-one onto . In words every number in  has a unique binary expansion in the form of a sequence in 
. Hence  and in particular, is uncountable. The reason for eliminating the bit strings that terminate in 1s is to

ensure uniqueness, so that the mapping is one-to-one. The bit string  corresponds to the same number in 
 as the bit string .

The following sets have the same cardinality, and in particular all are uncountable:

a. , the set of real numbers.
b. Any interval  of , as long as the interval is not empty or a single point.
c. , the set of irrational numbers.
d. , the set of transcendental numbers.
e. , the power set of .

Proof

Z N+ Z×N+ f : Z× →QN+

f(m, n) = m

n

e π

A

=Z ∖ {0}Z0 = ×Zn Zn−1 Z0 n ∈ N+ Zn n C = ⋃∞
n=1 Zn

C C P

( , , … , ) ↦ + x +⋯ +a0 a1 an a0 a1 an xn C P P

p ∈ P Ap p n P n

Ap p ∈ P A = ⋃p∈P Ap A

N ⊂A A

[0, 1)

{0, 1}N
+

N
+ {0, 1}

{0, 1 = {\bsx = ( , , …) : ∈ {0, 1} for all n ∈ }}N
+

x1 x2 xn N
+ (A.1.2)

N = \left\{\bs{x} \in \{0, 1\}^{\mathbb{N}_+}: x_n = 1 \text{ for all but finitely many } n\mathbb{R}ight\}
N = ⋃∞

n=1 Nn

N_n = \left\{\bs{x} \in \{0, 1\}^{\mathbb{N}_+}: x_k = 1 \text{ for all } k \ge n\mathbb{R}ight\} Nn

n ∈ N+ N S = {0, 1 ∖ N}N+ S ≈ {0, 1}N+

\bsx ↦∑
n=1

∞ xn

2n (A.1.3)

S [0, 1) [0, 1)
S [0, 1) ≈ S

⋯ 0111 ⋯x1x2 xk

[0, 1) ⋯ 1000 ⋯x1x2 xk

R

I R

R ∖ Q

R ∖A
P(N) N
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a. The mapping  maps  one-to-one onto  so . But , so 

, and all of these sets are uncountable by the previous result.

b. Suppose  and . The mapping  maps  one-to-one onto  and hence 
. Also, , , and , so 

. The function  maps  one-to-one onto , so . For ,
the function  maps  one-to-one onto  and the mapping  maps  one to one onto 

 so . Next,  and , so 
.

c.  is countably infinite, so .

d. Similarly,  is countably infinite, so .

e. If  is countably infinite, then by the previous result and (a), .

The Cardinality Partial Order

Suppose that  is a nonempty collection of sets. We define the relation  on  by  if and only if there exists a one-to-one
function  from  into , if and only if there exists a function  from  onto . In light of the previous subsection,  should
capture the notion that  is at least as big as , in the sense of cardinality.

The relation  is reflexive and transitive.

Proof

For , the identity function  given by  is one-to-one (and also onto), so . Suppose that 
 and that  and . Then there exist one-to-one functions  and . But then 
 is one-to-one, so .

Thus, we can use the construction in the section on on Equivalence Relations to first define an equivalence relation on , and then
extend  to a true partial order on the collection of equivalence classes. The only question that remains is whether the equivalence
relation we obtain in this way is the same as the one that we have been using in our study of cardinality. Rephrased, the question is
this: If there exists a one-to-one function from  into  and a one-to-one function from  into , does there necessarily exist a
one-to-one function from  onto ? Fortunately, the answer is yes; the result is known as the Schröder-Bernstein Theorem, named
for Ernst Schröder and Sergi Bernstein.

If  and  then .

Proof

Set inclusion  is a partial order on  (the power set of ) with the property that every subcollection of  has a
supremum (namely the union of the subcollection). Suppose that  maps  one-to-one into  and  maps  one-to-one into 

. Define the function  by  for . Then  is increasing:

From the fixed point theorem for partially ordered sets, there exists  such that . Hence 
 and therefore . Now define  by  if  and 

 if .

 maps  one-to-one onto ;  maps  one-to-one onto 

x ↦
2x−1

x(1−x)
(0, 1) R (0, 1) ≈R (0, 1) = [0, 1) ∖ {0}

(0, 1] ≈ (0, 1) ≈R

a, b ∈ R a < b x ↦ a +(b −a)x (0, 1) (a, b)
(a, b) ≈ (0, 1) ≈R [a, b) = (a, b) ∪ {a} (a, b] = (a, b) ∪ {b} [a, b] = (a, b) ∪ {a, b}
(a, b) ≈ [a, b) ≈ (a, b] ≈ [a, b] ≈R x ↦ ex R (0, ∞) (0, ∞) ≈R a ∈ R

x ↦ a +x (0, ∞) (a, ∞) x ↦ a −x (0, ∞)
(−∞, a) (a, ∞) ≈ (−∞, a) ≈ (0, ∞) ≈R [a, ∞) = (a, ∞) ∪ {a} (−∞, a] = (−∞, a) ∪ {a}
[a, ∞) ≈ (−∞, a] ≈R

\Q R ∖ \Q ≈R

\A R ∖A ≈R

S P(S) ≈P( ) ≈ {0, 1 ≈ [0, 1)N+ }N+

S ⪯ S A⪯B

f A B g B A A⪯B

B A

⪯

A ∈S : A → AIA (x) = xIA A⪯A

A, B, C ∈S A⪯B B⪯C f : A → B g : B → C

g ∘ f : A → C A⪯C

S

⪯

A B B A

A B

A⪯B B⪯A A ≈ B

⊆ P(A) A P(A)
f A B g B

A h : P(A) →P(A) h(U) = A ∖ g[B ∖ f(U)] U ⊆ A h

U ⊆ V ⟹ f(U) ⊆ f(V ) ⟹ B ∖ f(V ) ⊆ B ∖ f(U)

⟹ g[B ∖ f(V )] ⊆ g[B ∖ f(U)] ⟹ A ∖ g[B ∖ f(U)] ⊆ A ∖ g[B ∖ f(U)]

(A.1.4)

(A.1.5)

U ⊆ A h(U) = U

U = A ∖ g[B ∖ f(U)] A ∖ U = g[B ∖ f(U)] F : A → B F (x) = f(x) x ∈ U

F (x) = (x)g−1 x ∈ A ∖ U

f U f(U) g B ∖ f(U) A ∖ U
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Next we show that  is one-to-one. Suppose that  and . If  then  so 
 since  is one-to-one. If  then  so  since  is one-to-one. If 

and . Then  while , so  is impossible.

Finally we show that  is onto. Let . If  then  for some  so . If  then
 so .

We will write  if , but , That is, there exists a one-to-one function from  into , but there does not exist
a function from  onto . Note that  would have its usual meaning if applied to the equivalence classes. That is,  if
and only if  but . Intuitively, of course,  means that  is strictly larger than , in the sense of
cardinality.

 in each of the following cases:

a.  and  are finite and .
b.  is finite and  is countably infinite.
c.  is countably infinite and  is uncountable.

We close our discussion with the observation that for any set, there is always a larger set.

If  is a set then .

Proof

First, it's trivial to map  one-to-one into ; just map  to . Suppose now that  maps  onto  and let 
. Since  is onto, there exists  such that . Note that  if and only if 

.

The proof that a set cannot be mapped onto its power set is similar to the Russell paradox, named for Bertrand Russell.

The continuum hypothesis is the statement that there is no set whose cardinality is strictly between that of  and . The continuum
hypothesis actually started out as the continuum conjecture, until it was shown to be consistent with the usual axioms of the real
number system (by Kurt Gödel in 1940), and independent of those axioms (by Paul Cohen in 1963).

If  is uncountable, then there exists  such that  and  are uncountable.

Proof

There is an easy proof, assuming the continuum hypothesis. Under this hypothesis, if  is uncountable then .
Hence there exists a one-to-one function . Let . Then  is uncountable,
and since ,  is uncountable.

There is a more complicated proof just using the axiom of choice.

This page titled A.1: Cardinality-additional info is shared under a not declared license and was authored, remixed, and/or curated by David
Guichard.

F , ∈ Ax1 x2 F ( ) = F ( )x1 x2 , ∈ Ux1 x2 f( ) = f( )x1 x2

=x1 x2 f , ∈ A ∖ Ux1 x2 ( ) = ( )g−1 x1 g−1 x2 =x1 x2 g−1 ∈ Ux1

∈ A ∖ Ux2 F ( ) = f( ) ∈ f(U)x1 x1 F ( ) = ( ) ∈ B ∖ f(U)x2 g−1 x2 F ( ) = F ( )x1 x2

F y ∈ B y ∈ f(U) y = f(x) x ∈ U F (x) = y y ∈ B ∖ f(U)
x = g(y) ∈ A ∖ U F (x) = (x) = yg−1

A ≺ B A⪯B ANot ≈ B A B

A B ≺ [A] ≺ [B]
[A] ⪯ [B] [A]Ne[B] A ≺ B B A

A ≺ B

A B #(A) < #(B)
A B

A B

S S ≺P(S)

S P(S) x {x} f S P(S)
R = {x ∈ S : xNotinf(x)} f t ∈ S f(t) = R t ∈ f(t)
tNotinf(t)

N R

S A ⊆ S A Ac

S [0, 1)⪯ S

f : [0, 1) → S A = f\left[0, \frac{1}{2}\mathbb{R}ight) A

f\left[\frac{1}{2}, 1\mathbb{R}ight) \subseteq A^c Ac
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Answers

Answers to Selected Exercises

Section 2.1

1. Only (a), (c), and (e) are statements.

2. (a) false (b) false (c) false (d) true

3. (a)  (b)  (c)  is not a vowel

(d) This statement is either true or false.

4. (a) true (b) true (c) true (d) false (e) false (f) true

5. By definition, a rational number can be written as a ratio of two integers. After multiplying the numerator by 7, we still have a ratio of two integers. Conversely, given any rational number , we
can multiply the denominator by 7, we obtain another rational number  such that . Hence, the two sets  and  contain the same collection of rational numbers. In contrast,  contains
only one number, namely, 0. Therefore, .

Section 2.2

1. (a)  (b)  (c)  (d) 

2. (a) ; always false regardless of the value of .

(b) ; always true regardless of the value of .

(c) ; true if  is true, and false if  is false.

(d) ; true if  is true, and false if  is false.

3. (a) false (b) true

4. (a)  (b)  (c) 

Section 2.3

1. (a)  (b)  (c)  (d)  (e) 

2. (a) , which is false.

(b) , which is true if  is true, and is false if  is false.

(c) , which is true if  is true, and is false if  is false.

3. (a) 

(b) 

(c) 

4.  

5. (a) Using a truth table, we find that the implication  is always true. Hence, no truth value of  would make  false.

(b) From a truth table, we find that,  is false only when  is false. We can draw the same conclusion without using any truth table. An implication is false only when its
hypothesis (in this case, ) is true and its conclusion (in this case, ) is false. For  to be true, we need both  and  to be true. Now  is true and  is false require  to be false.

Section 2.4

1. (a)  (b)  (c)  (d) 

2. (a) , which is false.

(b) , which is true if  is true, and is false if  is false.

(c) , which is true if  is true, and is false if  is false.

3. (a) true (b) false (c) false (d) false

4. We say  is odd if and only if  for some integer .

Section 2.5  

1. 

2. Only (b) is a tautology, as indicated in the truth tables below.

(a) 

π ∉ Z + + ≠ ⋅ /413 23 33 32 42 u

x

y 7y = x 7Q Q 0Q

0Q ≠ Q

p∧ q ∧ rq̄̄ ∨p̄̄̄ q̄̄ (p∨ q) ∧ p∧ q¯ ¯¯̄¯̄ ¯̄ ¯̄

p∧ q r

p∨ q r

(p∧ q) ∨ r r r

∧ rq̄̄ r r

(4 ≤ x) ∧ (x ≤ 7) (4 < x) ∧ (x ≤ 7) (4 ≤ x) ∧ (x < 7)

p ⇒ q r ⇒ p ⇒ qp̄̄̄ ⇒ rp̄̄̄ ( ∧ q) ⇒ rp̄̄̄

p ⇒ q

p ⇒ r r r

(p∨ q) ⇒ r r r

−3 +x−3 = 0 ⇒ x = 3x3 x2

−3 +x−3 = 0 ⇒ x = 3x3 x2

x = 3 ⇒ −3 +x−3 = 0x3 x2

p

T

T

T

T

F

F

F

F

q

T

T

F

F

T

T

F

F

r

T

F

T

F

T

F

T

F

p∧ q

T

T

F

F

F

F

F

F

(p∧ q) ∨ r

T

T

T

F

T

F

T

F

p

T

T

T

T

F

F

F

F

q

T

T

F

F

T

T

F

F

r

T

F

T

F

T

F

T

F

p∨ q

T

T

T

T

T

T

F

F

p∧ r

T

F

T

F

F

F

F

F

(p∨ q) ⇒ (p∧ r)

T

F

T

F

F

F

T

T

(p∧ q) ⇒ (q∨ r) p (p∧ q) ⇒ (q∨ r)

(q∧ r) ⇒ (p∧ q) p

q∧ r p∧ q q∧ r q r q p∧ q p

p ⇔ q r ⇔ p̄̄̄ r ⇔ (q∧ )p̄̄̄ r ⇔ (p∧ q)

p ⇔ q

p ⇔ r r r

(p∨ q) ⇔ r r r

n n = 2q+1 q

p

T

T

T

T

q

T

F

T

F

p∨ q

T

T

T

F

p∨ q¯ ¯¯̄¯̄ ¯̄ ¯̄

F

F

F

T

p̄̄̄

F

F

T

T

q̄̄

F

T

F

T

∧p̄̄̄ q̄̄

F

F

F

T

p

T

T

F

F

q

T

F

T

F

p̄̄̄

F

F

T

T

∨ qp̄̄̄

T

F

T

T

( ∨ q) ⇒ pp̄̄̄

T

T

F

F
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(b) 

(c) 

3. The proofs are displayed below without explanations. Be sure to fill them in.

(b) 

(c) 

4. (a)

Converse: If triangle  is a right triangle, then  is isosceles

 and contains an angle of 45 degrees.

Inverse: If triangle  is not isosceles or does not contain an angle

 of 45 degrees, then  is not a right triangle.

Contrapositive: If triangle  is not a right triangle, then  is not isosceles

 or does not contain an angle of 45 degrees.

(b)

Converse: If quadrilateral  is both a rectangle and a rhombus,

 then  is a square.

Inverse: If quadrilateral  is not a square,

 then it is not a rectangle or not a rhombus.

Contrapositive: If quadrilateral  is not a rectangle or not a rhombus,

 then  is not a square.

5. (a) true (b) true (c) false

6. Only (b).

7. (a)  (b)  (c) 

Section 2.6

1. (a) There exists an integer  such that  is prime and  is even.

(b) For all integers , if , then  is prime or  is even.

(c) There exists an integer  such that  is prime, and either  is even or .

(d) For all integers , if  is prime and  is even, then .

2. (a) true (b) true (c) false (d) false (e) true

3. (a) 

(b) 

(c) 

4. (a)

There exist real numbers  and  such that .

(b)

There exists a positive real number  such that for all real numbers , .

(c)

p

T

T

F

F

q

T

F

T

F

p ⇒ q

T

F

T

F

q̄̄

F

T

F

T

p ⇒ q̄̄

F

T

T

T

(p ⇒ q) ∨ (p ⇒ )q̄̄

T

T

T

T

p

T

T

T

T

F

F

F

F

q

T

T

F

F

T

T

F

F

r

T

F

T

F

T

F

T

F

p ⇒ q

T

T

F

F

T

T

T

T

(p ⇒ q) ⇒ r

T

F

T

T

T

F

T

F

(p∧ q) ⇒ r ≡

≡

≡

≡

∨ rp∧ q¯ ¯¯̄¯̄ ¯̄ ¯̄

( ∨ ) ∨ rp̄̄̄ q̄̄

∨ ( ∨ r)p̄̄̄ q̄̄

p ⇒ ( ∨ r)q̄̄

(p ⇒ ) ∧ (p ⇒ )q̄̄ r̄̄ ≡

≡

≡

≡

( ∨ ) ∧ ( ∨ )p̄̄̄ q̄̄ p̄̄̄ r̄̄

∨ ( ∧ )p̄̄̄ q̄̄ r̄̄

∨p̄̄̄ q∨ r¯ ¯¯̄¯̄¯̄¯̄

p∧ (q∨ r)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄

ABC ABC

ABC

ABC

ABC ABC

ABCD

ABCD

ABCD

ABCD

ABCD

p∧ q p∧ q̄̄ p∧ q

n n n

n n > 2 n n

n n n n > 2

n n n n ≤ 2

∃x < 0 ∃y, z ∈ R (y < z∧xy ≤ xz)

∃x ∈ Z [ ∧ ]p(x)
¯ ¯¯̄¯̄¯̄¯

q(x)
¯ ¯¯̄¯̄¯̄¯

∃x, y ∈ R [p(x, y) ∧ ]q(x, y)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄

∀x,y ∈ R (x + y = y + x)

∃x,y ∈ R (x + y ≠ y + x)

x y x + y ≠ y + x

∀x ∈ ∃y ∈ R ( = x)R+ y2

∃x ∈ ∀y ∈ R ( ≠ x)R+ y2

x y ≠ xy2
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For every real number , there exists an integer  such that .

5. The statement “a square must be a parallelogram” means, symbolically,

but the statement “a square must not be a parallelogram” means

The second statement is not the negation of the first. The correct negation, in symbol, is

In words, it means “there exists a square that is not a parallelogram.”

Section 3.1

1. Placing six dominoes horizontally in each row covers the entire chessboard.

2. Let . From the following chart

we conclude there  has a solution between  and , another one between 0 and 1, and a third one between 3 and 4. So it has at least three real solutions.

Remark. The Fundamental Theorem of Algebra asserts that a real polynomial of degree  has at most  real roots. Hence, the given equation has exactly three real solutions.

3. .

Section 3.2

1. No,  is composite.

2. According to (i), the number  is irrational. It follows from (ii) that  is also irrational. Applying (ii) one more time, we conclude that  is irrational.

3. (a) The statement is false, because , but .

(b) The statement is false, because when ,

is composite.

Section 3.3

(a) We will prove the contrapositive of the given statement. That is, we will prove that if  is odd, then  is odd. If  is odd, we can write  for some integer . Then

where  is an integer. This shows that  is odd.

(b) Suppose the given statement is false. That is, suppose  is even, but  is odd. Since  is odd,  for some integer . Then

where  is an integer. This shows that  is odd, which contradicts the assumption that  is even. Therefore, the given statement must be true.

Suppose there exist some numbers  such that . Then

would have implied that . This contradicts the assumption that . Therefore, .

Suppose  is false for some logical statements  and . For a disjunction to be false, we need

 to be false, and

 to be false.

They in turn require

 to be true and  to be false, and

 to be true and  to be false.

Having  false would imply  is true, which contradicts what we found. Therefore, the given logical formula is always true, hence, a tautology.

Section 3.4

1. We proceed by induction on . When , the left-hand side of the identity reduces to , and the right-hand side becomes . Hence, the identity holds when . Assume the
identity holds when  for some integer ; that is, assume

for some integer . We want to show that it also holds when ; that is, we want to show that

Using the inductive hypothesis, we find

∃y ∈ R ∀x ∈ Z (2 + 1 > y)x2 x2

∀y ∈ R ∃x ∈ Z (2 + 1 ≤ y)x2 x2

y x 2 + 1 ≤ yx2 x2

∀PQRS (PQRS is a square ⇒ PQRS is a parallelogram), (1)

∀PQRS (PQRS is a square ⇒ PQRS is not a parallelogram). (2)

∃PQRS (PQRS is a square ∧PQRS is a parallelogram). (3)

f(x) = −12x+2x3

x

f(x)

−4

−14

−3

12

−2

18

−1

13

0

2

1

−9

2

−14

3

−7

4

18
(4)

−12x+2 = 0x3 −4 −3

n n

n = 3

+1 = 923

2
–

√ =2
–

√4 2
–

√
−−−

√ =2
–

√8 2
–

√4−−−
√

(−3 > (−2)2 )2 −3 ≯ −2

n = 41

+n+41 = +41 +41 = 41(41 +1 +1) = 41 ⋅ 43n2 412 (5)

n n2 n n = 2q+1 q

= (2q+1 = 4 +4q+1 = 2(2 +2q) +1,n2 )2 q2 q2 (6)

2 +2qq2 n2

n2 n n n = 2q+1 q

= (2q+1 = 4 +4q+1 = 2(2 +2q) +1,n2 )2 q2 q2 (7)

2 +2qq2 n2 n2

a ≠ b + = 2aba2 b2

0 = −2ab+ = (a−ba2 b2 )2 (8)

a = b a ≠ b + ≠ 2aba2 b2

(p ⇒ q) ∨ (p ⇒ )q̄̄ p q

p ⇒ q

p ⇒ q̄̄

p q

p q̄̄

q̄̄ q

n n = 1 = 113 = 1⋅12 22

4
n = 1

n = k k ≥ 1

+ + +⋯ + =13 23 33 k3
(k+1k2 )2

4
(9)

k ≥ 1 n = k+1

+ + +⋯ +(k+1 = .13 23 33 )3 (k+1 (k+2)2 )2

4
(10)
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Therefore, the identity also holds when . This completes the induction.

Section 3.5

1. We proceed by induction on . When , the product  becomes , which is obviously a multiple of 3. Hence, the claim holds when . Assume the claim holds
when  for some integer ; that is, assume that  is a multiple of 3 for some integer . Then we can write

for some integer . We want to show that the claim is still valid when . That is, we want to show that  is also a multiple of 3. So we want to find an integer  such
that

We note that, using the inductive hypothesis,

where  is an integer. Hence,  is a multiple of 3. This completes the induction.

2. (b)  for all integers .

3. (b)  for all integers .

Section 3.6

1. We proceed by induction on . When , the left-hand side of the identity reduces to , and the right-hand side becomes . Hence, the identity holds when .
Assume the identity holds when  for some integer ; that is, assume

for some integer . We want to show that it also holds when ; that is, we want to show that

Using the inductive hypothesis, we find

Therefore, the identity also holds when . This completes the induction.

Section 4.1

1. (a)  (b)  (c)  (d) 

2. (a) 

(b) 

(c) 

3. (a)  (d)  (f) 

Remark. We cannot write (b) as  and (c) as , because  and  mean something else. If we drop 0 from (e), then . However, the inclusion of 0 makes it harder to
describe (d) in the form of .

4. (a)  (b)  (c) 

5. (a) 10 (b) 11 (c) 7

6. (a) true (b) true (c) true (d) false

7. (a) It is incorrect to write  because  is a set, but  is a logical statement.

(b) No, because both  and  are sets, so we should use an equal sign to compare them. The notation  only applies to logical statements. The correct way to say it is “
.”

Section 4.2

1. (a) true (b) true (c) true (d) true (e) true (f) false

2. We have  because every integer  is also a rational number, as we can write it as the rational number .

3. Yes, this is the transitive property.

4. (e) 

5. (a) False, because the set  cannot be found in  as an element.

(b) False, because , the sole element in , cannot be found in  as an element.

(c) False. For , the set  must be a subset of . This means  must belong to , which is not true.

Section 4.3

1. (a) 

(b) 

+ + +⋯ +(k+113 23 33 )3 =

=

=

=

=

+ + +⋯ + +(k+113 23 33 k3 )3

+(k+1
(k+1k2 )2

4
)3

(k+1 [ +4(k+1)])2 k2

4
(k+1 ( +4k+4))2 k2

4

.
(k+1 (k+2)2 )2

4

n = k+1

n n = 1 n(n+1)(n+2) 1 ⋅ 2 ⋅ 3 = 6 n = 1
n = k k ≥ 1 k(k+1)(k+2) k ≥ 1

k(k+1)(k+2) = 3q (11)

q n = k+1 (k+1)(k+2)(k+3) Q

(k+1)(k+2)(k+3) = 3Q. (12)

(k+1)(k+2)(k+3) =

=

=

k(k+1)(k+2) +3(k+1)(k+2)

3q+3(k+1)(k+2)

3 [q+(k+1)(k+2)],

q+(k+1)(k+2) (k+1)(k+2)(k+3)

= 1 −Sn
1

(n+1)!
n ≥ 1

=Tn
n+1

2n+3
n ≥ 0

n n = 1 = = 1F 2
1 12 = 1 ⋅ 1 = 1F1F2 n = 1

n = k k ≥ 1

+ + +⋯ + =F 2
1 F 2

2 F 2
3 F 2

k
FkFk+1 (13)

k ≥ 1 n = k+1

+ + +⋯ + = .F 2
1 F 2

2 F 2
3 F 2

k+1
Fk+1Fk+2 (14)

+ + +⋯ +F 2
1 F 2

2 F 2
3 F 2

k+1
=

=

=

=

+ + +⋯ + +F 2
1 F 2

2 F 2
3 F 2

k
F 2
k+1

+FkFk+1 F 2
k+1

( + )Fk+1 Fk Fk+1

.Fk+1Fk+2

n = k+1

{−5, −4, −3, −2, −1, 0, 1, 2, 3} {1, 2, 3} {0, −2, 3} {−3, 3}

{n ∈ Z ∣ n < 0}

\{n\in\mathbb{Z} \mid \mbox{\)n\(is a perfect cube}\}

\{n\in\mathbb{Z} \mid \mbox{\)n\(is a perfect square}\}

Z− 5Z 4 +6Z

Z3 Z2 Z3 Z2 {4, 8, 12, …} = 4N

4S

(−4, 7) (−4, 7] (0, 7]

(3, 7] = 3 < x ≤ 7 (3, 7] 3 < x ≤ 7

{x ∈ R ∣ < 0}x2 ∅ ≡
{x ∈ R ∣ < 0} = ∅x2

Z ⊆ N n n

1

{∅, {a}, {{b}}, {a, {b}}}

{a} {a, b, c}

a {a} {{a}, b, c}

{a} ∈ ℘({{a}, b, c}) {a} {{a}, b, c}} a {{a}, b, c}

{−4, −3, −2, −1, 0, 1, 2, 3, 4}

{−3, −2, −1, 0, 1, 2, 3, 4}
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(c) 

2. (a) false (b) false

3. (a)  (b) 

4. For example, take , and .

5. Assume  and , we want to show that . In this regard, let , we want to show that  as well. Since , the definition of set union asserts that either 
 or .

Case 1: If , then  implies that .

Case 2: If , then  implies that .

In both cases, we find . This proves that .

6. (a) The notation  is used to connect two sets, but “ ” and “ ” are both logical statements. We should also use  instead of . The statement should have been written as “
.”

(b) If we read it aloud, it sounds perfect:

The trouble is, every notation has its own meaning and specific usage. In this case,  is not exactly a replacement for the English word “and.” Instead, it is the notation for joining two logical
statements to form a conjunction. Before , we have “ ,” which is a logical statement. But, after , we have “ ,” which is a set, and not a logical statement. It should be written as “

.”

Section 4.4

1. (a) 

(b) 

2. .

3. (a) 

Section 4.5

1. , .

2. , .

3. , .

4. , .

5. , .

6. , .

Section 5.1

1. (a) 3 (b) 3 (c) 3 (d) 1

2. We claim that the subset  does not have a smallest element. To see why, suppose it has a smallest element . The midpoint between 3 and  is the number , and

This means  is also inside the interval , and is smaller than . This contradicts the minimality of . Thus, the interval  does not have a smallest element. Consequently, the interval 
 is not well-ordered.

3. We know that  is well-ordered. Since  is a subset of , and  is clearly nonempty, we conclude from Problem [ex:PWO-04] that  is also well-ordered.

Section 5.2

1. (a) 23, 1 (b) , 1 (c) , 13

2. This is an immediate consequence of Corollary [cor:divalgo].

3. (a) Let  be any integer. Then .

Case 1: if , then  for some integer , and

where  is an integer.

Case 2: if , then  for some integer , and

where  is an integer.

Case 2: if , then  for some integer , and

where  is an integer.

In all three cases, we have shown that  is a multiple of 3.

(b) We note that

is a product of three consecutive integers. As we have seen in Problem [ex:divalgo-04], any three consecutive integers must contain a multiple of 3. It follows that their product is also a multiple of
3.

4. (a)  (b) 4

Section 5.3

Assume  and . There exist integers  and  such that  and . Then

{−3, −2, −1, 0, 1, 2, 3, …}

E∩D ∪BE
¯ ¯¯̄

A = {x} B = {{x}, x}

A ⊆ C B ⊆ C A∪B ⊆ C x ∈ A∪B x ∈ C x ∈ A∪B

x ∈ A x ∈ B

x ∈ A A ⊆ C x ∈ C

x ∈ B B ⊆ C x ∈ C

x ∈ C A∪B ⊆ C

∩ x ∈ A x ∈ B ⇔ ≡
x ∈ A ∧ x ∈ B ⇔ x ∈ A∩B

If x belongs to A and B, then x belongs to A∩B. (15)

∧
∧ x ∈ A ∧ B

x ∈ A ∧ x ∈ B ⇒ x ∈ A∩B

{(−2, 0), (−2, 4), (2, 0), (2, 4)}

{(−2, −3), (−2, 0), (−2, 3), (−2, −3), (−2, 0), (−2, 3)}

2 ⋅ 2 ⋅ 2 ⋅ 3 = 24

{(−2, ∅), (−2, {−2}), (−2, {2}), (−2, {−2, 2}), (2, ∅), (2, {−2}), (2, {2}), (2, {−2, 2})}

= [0, 2)⋂∞
n=1 An = (−1, ∞)⋃∞

n=1 An

= ∅⋂∞
n=0 Cn = N ∪ {0}⋃∞

n=0 Cn

= = {0}⋂n∈N En E0 = Z⋃n∈N En

= [1, ∞)⋃i∈I Ai = {1}⋂i∈I Ai

(1 −2x, ) = [−1, 1]⋂x∈(1,2) x2 (1 −2x, ) = (−3.4)⋃x∈(1,2) x2

= {(0, 0)}⋂r∈(0,∞) Ar = × ∪ {(0, 0)}⋃r∈(0,∞) Ar R∗ R+

(3, 5) x x
3+x

2

3 < < x < 5.
3 +x

2
(16)

3+x

2
(3, 5) x x (3, 5)

(3, 5]

N 2N N 2N 2N

−11 −6

n n mod 3 = 0, 1, 2

n mod 3 = 0 n = 3q q

−n = (3q −3q = 27 −3q = 3(9 −q),n3 )3 q3 q2 (17)

9 −qq2

n mod 3 = 1 n = 3q+1 q

−n = (3q+1 −(3q+1) = 27 +27 +6q = 3(9 +9 +2q),n3 )3 q3 q2 q3 q2 (18)

9 +9 +2qq3 q2

n mod 3 = 2 n = 3q+2 q

−n = (3q+2 −(3q+2) = 27 +54 +33q+6 = 3(9 +18 +11q+2),n3 )3 q3 q2 q3 q2 (19)

9 +18 +11q+2q3 q2

−nn3

−n = n( −1) = n(n−1)(n+1) = (n−1)n(n+1)n3 n2 (20)

s+ t

a ∣ b c ∣ (−a) x y b = ax −a = cy

b = ax = (−a)(−x) = cy ⋅ (−x) = (−c) ⋅ xy, (21)
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where  is an integer. Thus, .

There are three cases, depending on the remainder when an integer is divided by 3.

.

.

.

In each case, we have shown that the square of an integer is of the form  or .

Section 5.4

1. (a)  (b)  (c) 

2. 1, 2, 17, and 34.

Section 5.5

1. Since

we deduce that .

2. Let , , and  be positive integers such that , , and . Then there exist integers  and  such that  and ; and there exist integers  and  such that .
It follows that

Using  and , we find

where  is an integer. Thus, .

Section 5.6

1. (a)  (b) 

2. (a) 81 (b) 168

3. Every 50 days.

4. Assume , then  and . This means  is a multiple of both 10 and 15. Consequently,  is a multiple of , which means . Thus, 
.

Next, assume , then  is a multiple of 30. Consequently,  is a multiple of 10, as well as a multiple of 15. This means , and . As a result, . Thus, 
. Together with , we conclude that .

5. (a) When  is divided by 4, its remainder is 0, 1, 2, or 3. But  is odd, hence,  is of the form  or  for some integer . Since , we also need  to be a nonnegative integer.

(b) When  is divided by 6, its remainder is 0, 1, 2, 3, 4, or 5. But  is odd, hence,  is of the form , , or . We rule out the form  because this would make  a multiple of
3. Hence,  is of the form  or  for some nonnegative integer .

Section 5.7

1. The addition and multiplication tables for  are listed below.

Only 1, 3, 5, and 7 have multiplicative inverses. In fact, , , , and .

2. The sum is 9, and the product is 7.

3. From the following computation

we determine that  (mod 7). Hence,  is not a multiple of 7 for all integers .

4. Both methods give  in .

5. (a) 9

Section 6.1

1. -24pt 

2. .

Section 6.2

1. .

xy (−c) ∣ b

(3q = 9 = 3 ⋅ 3)2 q2 q2

(3q+1 = 9 +6q+1 = 3(3 +2q) +1)2 q2 q2

(3q+2 = 9 +12q+4 = 9 +12q+3 +1 = 3(3 +4q+1) +1)2 q2 q2 q2

3k 3k+1

1 ⋅ 27 +0 ⋅ 81 = 27 −3 ⋅ 24 +1 ⋅ 84 = 12 −35 ⋅ 1380 +16 ⋅ 3020 = 20

−3 ⋅ (2n+1) +2 ⋅ (3n+2) = 1, (22)

gcd(2n+1, 3n+2) = 1

a b c a ∣ c b ∣ c gcd(a, b) = 1 x y c = ax c = by s t sa+ tb = 1

c = c ⋅ 1 = c(sa+ tb) = csa+ctb. (23)

c = ax c = by

c = csa+ctb = by ⋅ sa+ax ⋅ tb = ab(ys+xt), (24)

ys+xt ab ∣ c

⋅ ⋅ 732 52 2 ⋅ ⋅ ⋅ 1132 72

x ∈ 10Z ∩ 15Z x ∈ 10Z x ∈ 15Z x x \lcm(10, 15) = 30 x ∈ 30Z

10Z ∩ 15Z ⊆ 30Z

x ∈ 30Z x x x ∈ 10Z x ∈ 15Z x ∈ 10Z ∩ 15Z

30Z ⊆ 10Z ∩ 15Z 10Z ∩ 15Z ⊆ 30Z 10Z ∩ 15Z = 30Z

p p p 4k+1 4k+3 k p ≥ 3 k

p p p 6k+1 6k+3 6k+5 6k+3 p

p 6k+1 6k+5 k

Z8

+

0

1

2

3

4

5

6

7

0

0

1

2

3

4

5

6

7

1

1

2

3

4

5

6

7

0

2

2

3

4

5

6

7

0

1

3

3

4

5

6

7

0

1

2

4

4

5

6

7

0

1

2

3

5

5

6

7

0

1

2

3

4

6

6

7

0

1

2

3

4

5

7

7

0

1

2

3

4

5

6

⋅

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

0

1

0

1

2

3

4

5

6

7

2

0

2

4

6

0

2

4

2

3

0

3

6

1

4

7

2

5

4

0

4

0

4

0

4

0

4

5

0

5

2

7

4

1

6

3

6

0

6

4

2

0

6

4

2

7

0

7

6

5

4

3

2

1

(25)

= 11−1 = 33−1 = 55−1 = 77−1

m (mod~7)

0

±1

±2

±3

+1 (mod~7)m2

+1 = 102

+1 = 212

+1 = 522

+1 = 10 ≡ 332

(26)

+1 ≢ 0m2 +1m2 m

= 1445 Z11

x

⌊x⌋

⌈x⌉

[x]

5.7

5

6

6

π

3

4

3

e

2

3

3

−7.2

−8

−7

−7

−0.8

−1

0

−1

9

9

9

9

[0, ∞)

[ , ∞)7
3
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2. Only  is a well-defined function. The image  is undefined, and there are two values for . Hence, both  and  are not well-defined functions.

3. (a) Yes, because no division by zero will ever occur.

4. -24pt  0.4in 

5. (a) 7 (b) 7 (c) 3

Section 6.3

1. (a) No. For example, .

(b) Yes, since  for .

2. Because the domain and the codomain are half-open intervals, we need to be careful with the inclusion and exclusion of the endpoints. We can use the graph displayed below on the left.

We find .

3. (a) One-to-one (b) Not one-to-one

4. (a) Not one-to-one (b) One-to-one

5. There are twelve one-to-one functions from  to . The images of 1 and 2 under them are listed below.

6. (a) One-to-one (b) Not one-to-one (c) Not one-to-one

Section 6.4

1. (a) Yes! It is not easy to express  in terms of  from the equation . However, from its graph, we can tell that the -values cover all the possible real values in the codomain.

(b) No, because .

2. (b) Not onto (c) Onto

3. (b) Not onto (c) Onto

4. No, because we have at most two distinct images, but the codomain has four elements.

5. (a) Onto (b) Not onto (c) Not onto

Section 6.5

1. (a) , 

(b) , 

(c) , 

(d) , 

2. The images of  are tabulated below.

(a)  (b)  (c) 

3. (a) ;  (b) ; 

4. (a)  (b)  (c) 

5. For a function to be well-defined, each row sum must be 1. For the function to be one-to-one, each column sum must be at most 1. For the function to be onto, each column sum must be at least 1
(hence, no column sum is zero).

6. Let , we want to show that  as well. Since , we know there exists  such that . Having  means 
 but . Hence,  but . In other words, . This leads to . This completes the proof that .

7. ; .

Section 6.6

1. Only (e) is bijective.

2. Their inverse functions  are defined by

3. , where 

4. , where .

5. (a) , 

6. The images under  are given below.

Section 6.7

1. Both  and  are from  to , where , and .

2. We do not need to find the formula of the composite function, as we can evaluate the result directly: .

3. (a) , 

(b) , 

4. (a) ,

 , , , , 

g f(4) h(3) f h

x

p(x)

1

3

2

1

3

2

4

2

x

q(x)

1

2

2

3

3

1

4

3

f(0) = f(2) = 1

(x) = 3 −4x = x(3x−4) > 0g′ x2 x > 2

f(x) = x+3
2

1
2

{1, 2} {a, b, c, d}

1

2

f1

a

b

f2

a

c

f3

a

d

f4

b

a

f5

b

c

f6

b

d

f7

c

a

f8

c

b

f9

c

d

f10

d

a

f11

d

b

f12

d

c

(27)

x y y = −2 +1x3 x2 y

g(x) ≥ 1

(A) = {a, b}f1 (B) = {2, 3, 4, 5}f−1
1

(A) = {a, c}f2 (B) = {2, 4}f−1
2

(A) = {b, d}f3 (B) = ∅f−1
3

(A) = {e}f4 (B) = {5}f−1
4

s

x

s(x)

0

7

1

11

2

3

3

7

4

11

5

3

6

7

7

11

8

3

9

7

10

11

11

3
(28)

{3, 11} {0, 3, 6, 9} {3, 7, 11}

[20, 26) {20, 23, 26} [−3, − )4
3

{−2}

{ , , , 3, 9, 27, 15, 45, 135}3
5

9
5

27
5

{(−3, 2)} N ×{0}

y ∈ f( ) −f( )C1 C2 y ∈ f( − )C1 C2 y ∈ f( ) −f( )C1 C2 x ∈ A f(x) = y y ∈ f( ) −f(C −2)C1

y ∈ f( )C1 y ∉ f( )C2 x ∈ C1 x ∉ C2 x ∈ −C1 C2 y = f(x) ∈ f( − )C1 C2 f( ) −f( ) ⊆ f( − )C1 C2 C1 C2

{0, 1, 4, 9} {0, ±1, ±2, ±3}

, : (4, 7) → (1, 3)f−1 g−1

(x) = (x− ) , and (x) = − (x− ) .f−1 2

3

5

2
g−1 2

3

17

2
(29)

:→ [4, 7][1, 3]g−1 g^{-1}(x) = \cases{ x-3 & if\)4x < 5\(, \cr \textstyle \frac{1}{2}(11-x) & if\)5x7\(. \cr}

: (−∞, −3) → Rs−1 (x) = ln( )s−1 1
2

4−x

7

: Q → Qu−1 (x) = (x+2)/3u−1

: {a, b, c, d, e, f , g,h} → {1, 2, 3, 4, 5, 6, 7, 8}α−1

x

(x)α−1

a

2

b

5

c

8

d

3

e

6

f

7

g

1

h

4
(30)

f ∘ g g∘ f R R (f ∘ g)(x) = 15 +19x2 (g∘ f)(x) = 75 −30x+7x2

f(g(f(0))) = f(g(1)) = f(2) = −5

g∘ f : Z → Q (g∘ f)(n) = 1/( +1)n2

g∘ f : R → (0, 1) (g∘ f)(x) = /( +1)x2 x2

g∘ f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5}

(g∘ f)(1) = 2 (g∘ f)(2) = 5 (g∘ f)(3) = 1 (g∘ f)(4) = 3 (g∘ f)(5) = 4

https://libretexts.org/
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5. , 

6. (a) , 

 {(f\circ g)^{-1}}:{\mathbb{Z}}\to{\mathbb{Z}}\), 

 , 

 , 

 , 

Section 7.1

1. (a)

(b)

0pt

(140,60)(-10,-10) (0, 0)(40,0)4 (0,40)(40,0)4 (-10,-20)(20,20)1 (-10,40)(20,20)1 ( 30,-20)(20,20)2 ( 30,40)(20,20)2 ( 70,-20)(20,20)3 ( 70,40)(20,20)3 (110,-20)(20,20)6 (110,40)(20,20)6 ( 0,0)(
1,1) 40 ( 40,0)(-1,1) 40 ( 0,0)( 2,1) 80 ( 40,0)( 1,1) 40 ( 0,0)( 3,1)120 ( 40,0)( 2,1) 80 ( 80,0)(-2,1) 80 (120,0)(-3,1)120 ( 80,0)(-1,1) 40 (120,0)(-2,1) 80 ( 80,0)( 1,1) 40 (120,0)(-1,1) 40

0.6in

0pt 

(c)

0pt

(140,60)(-10,-10) (0, 0)(40,0)4 (0,40)(40,0)4 (-10,-20)(20,20)1 (-10,40)(20,20)1 ( 30,-20)(20,20)2 ( 30,40)(20,20)2 ( 70,-20)(20,20)3 ( 70,40)(20,20)3 (110,-20)(20,20)6 (110,40)(20,20)6 ( 0,0)(
1,1) 40 ( 0,0)( 2,1) 80 ( 40,0)( 1,1) 40 ( 0,0)( 3,1)120 ( 40,0)( 2,1) 80 ( 80,0)( 1,1) 40

0.6in

0pt 

2. (a) .

(b) .

(c) , .

3. 0pt

(220,60)(-10,-10) (0, 0)(40,0)6 (0,40)(40,0)6 (-10,-20)(20,20) 1 (-10,40)(20,20) 1 ( 30,-20)(20,20) 2 ( 30,40)(20,20) 2 ( 70,-20)(20,20) 4 ( 70,40)(20,20) 4 (110,-20)(20,20) 5 (110,40)(20,20) 5
(150,-20)(20,20)10 (150,40)(20,20)10 (190,-20)(20,20)20 (190,40)(20,20)20 ( 0,0)( 1,1) 40 ( 40,0)( 1,1) 40 ( 0,0)( 2,1) 80 ( 0,0)( 3,1)120 ( 40,0)( 3,1)120 ( 0,0)( 4,1)160 ( 40,0)( 4,1)160 ( 0,0)(
5,1)200 ( 80,0)( 3,1)120 (120,0)( 1,1) 40 (120,0)( 2,1) 80 (160,0)( 1,1) 40

0pt 

4. 

Section 7.2

1. (a) Reflexive, symmetric, antisymmetric, and transitive.

(b) Irreflexive, and symmetric.

(c) Irreflexive, and transitive.

2. (a) Antisymmetric.

(b) Reflexive, symmetric, and transitive.

(c) Irreflexive, symmetric, and transitive.

3. Reflexive, symmetric, and transitive.

4. Antisymmetric, and transitive.

5. Irreflexive, and antisymmetric.

6. Symmetric.

g∘ f : Z → Z (g\circ f)(n) = \cases{ 3(2n-1) & if\)n0\(, \cr 2n+1 & if\)n < 0\(. \cr}

f ∘ g : Z → Z (f ∘ g)(n) = 3 −n

(f ∘ g (n) = 3 −n)−1

:Z → Zf−1 (n) = 2 −nf−1

: Z → Zg−1 (n) = n−1g−1

∘ : Z → Zg−1 f−1 ( ∘ )(n) = 3 −ng−1 f−1

\noalign\medskip

1

2

3

6

1 2 3 6

⎛

⎝

⎜⎜⎜

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

⎞

⎠

⎟⎟⎟

\noalign\medskip

1

2

3

6

1 2 3 6

⎛

⎝

⎜⎜⎜

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1

0

⎞

⎠

⎟⎟⎟

\noalign\medskip

1

2

3

6

1 2 3 6

⎛

⎝

⎜⎜⎜

0

0

0

0

1

0

0

0

1

1

0

0

1

1

1

0

⎞

⎠

⎟⎟⎟

domain = image = {1, 2, 3, 6}

domain = image = {1, 2, 3, 6}

domain = {1, 2, 3} image = {2, 3, 6}

\noalign\medskip

1

2

4

5

10

20

1 2 4 5 10 20

⎛

⎝

⎜⎜
⎜⎜⎜
⎜⎜⎜

0

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

1

1

0

1

0

0

1

1

1

1

1

0

⎞

⎠

⎟⎟
⎟⎟⎟
⎟⎟⎟

\noalign\medskip

∅

{1}

{2}

{1, 2}

∅ {1} {2} {1, 2}

⎛

⎝

⎜
⎜⎜

0

0

0

0

0

1

0

1

0

0

1

1

0

1

1

1

⎞

⎠

⎟
⎟⎟
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7. (a)  is not reflexive because  if .

(b)  is not irreflexive because .

(c) No. For example, consider , , , and . Then , , but .

(d)

0pt

(300,60)(-10,-10) (0, 0)(40,0)8 (0,40)(40,0)8 (-10,-20)(20,20)  (-10, 40)(20,20)  ( 30,-20)(20,20)  ( 30, 40)(20,20)  ( 70,-20)(20,20)  ( 70, 40)(20,20)  (110,-20)(20,20)  (110, 40)
(20,20)  (140,-20)(40,20)  (140, 40)(40,20)  (180,-20)(40,20)  (180, 40)(40,20)  (220,-20)(40,20)  (220, 40)(40,20)  (260,-20)(40,20)  (260, 40)(40,20)

 ( 0, 0)( 0,1) 40 ( 0, 0)( 1,1) 40 ( 0, 0)(5,1)200 ( 0, 0)( 2,1) 80 ( 0, 0)(6,1)240 ( 0, 0)( 3,1)120 (0,0, 280,40) ( 0, 0)( 4,1)160 ( 40, 0)(-1,1) 40 ( 40, 0)( 1,1) 40 ( 40, 0)( 2,1) 80 ( 40, 0)(
5,1)200 ( 80, 0)(-2,1) 80 ( 80, 0)(-1,1) 40 ( 80, 0)( 2,1) 80 ( 80, 0)( 1,1) 40 (120, 0)(-3,1)120 (120, 0)(-1,1) 40 (120, 0)(-2,1) 80 (120, 0)( 1,1) 40 (160, 0)(-1,1) 40 (160, 0)(-4,1)160 (200, 0)
(-3,1)120 (200, 0)(-5,1)200 (240, 0)(-6,1)240 (240, 0)(-5,1)200 (280,0, 0,40)

18pt

0pt 

8. (a) Symmetric.

(b) Reflexive, and symmetric.

9. (a) Reflexive, antisymmetric, and transitive.

(b) Reflexive, symmetric, and transitive.

(c) Symmetric.

10. (a) Reflexive, antisymmetric, and transitive.

(b) Symmetric.

(c) Symmetric, and transitive.

11. (a) Reflexive, and transitive.

(b) Symmetric,

(c) Reflexive, symmetric, and transitive.

12. (a) Symmetric, and transitive.

(b) Reflexive, symmetric, and transitive.

(c) Reflexive, and transitive.

Section 7.3

1. (a) The equivalence classes are of the form  for some integer . For instance, , , , and .

(b) There are three equivalence classes: , , and .

2. (a) True

(b) False

(c) 

(d) . In other words,  if  contains the same element in , plus possibly some elements not in .

3. (a) Yes, with . In other words, the equivalence classes are the straight lines of the form  for some constant .

(b) No. For example,  and , but . Hence, the relation  is not transitive.

4. We find , and .

Section 7.4

1. The Hasse diagram is shown below.

(180,230) (80,20)(80, 70)2(0,0)( 0,70)2(-6,5)60 (20,90)(80,-70)2(0,0)( 0,70)2( 6,5)60 (10,90)(80,-70)2(0,0)(80,70)2( 0,1)50 ( 80, 0)(20,20) 1 ( 0, 70)(20,20) 2 ( 80, 70)(20,20) 3 (160, 70)(20,20) 5
(-10,140)(40,20) 6 ( 70,140)(40,20)10 (150,140)(40,20)15 ( 70,210)(40,20)30

2. Let , since , we also find . Since  is a poset, the relation  on  is reflexive, hence, . This shows that  is still reflexive when restricted to . Antisymmetry and
transitivity are proved with a similar argument.

3. (b) The Hasse diagram is shown below.

(180,160) (10,90)(160,0)2(0,1)50 ( 80,20)(-6,5)60 (100,20)( 6,5)60 (160,90, 20,140) ( 20,90, 160,140) ( 80, 0)(20,20)  ( 0, 70)(20,20)  (160, 70)(20,20)  ( 0,140)(20,20)  (160,140)(20,20)

4. .

Section 8.2

1. 6.

2. 70.

3. 

4. , 

5. (a)  (b)  (c)  (d)  (e) 

6. (a)  (b)  (c)  (d) 

A (X,X) ∉ A X ≠ ∅

A (∅, ∅) ∈ A

S = {a, b, c} X = {a} Y = {b} Z = {a, c} (X,Y ) ∈ A (Y ,Z) ∈ A (X,Z) ∉ A

∅ ∅ {a} {a} {b} {b} {c}
{c} {a, b} {a, b} {a, c} {a, c} {b, c} {b, c} {a, b, c}

{a, b, c}

\noalign\medskip
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3. .
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